
ACM/IEEE 16th International Conference on
Model Driven Engineering Languages and Systems
September 29, 2013 – Miami, Florida (USA)

XM 2013 – Extreme Modeling Workshop
Proceedings
Juan de Lara, Davide Di Ruscio, Alfonso Pierantonio (Eds.)

Published on September 23, 2013 v1.0

Program Committee

Colin Atkinson University of Mannheim (Germany)
Nelly Bencomo Inria (France)

Jordi Cabot INRIA-École des Mines de Nantes (France)
Antonio Cicchetti Mälardalen University (Sweden)
Tony Clark Middlesex University (UK)
Juan De Lara (co-chair) Universidad Autonoma de Madrid (Spain)
Davide Di Ruscio (co-chair) Università degli Studi dell’Aquila (Italy)
Gregor Engels University of Paderborn (Germany)
Jean-Marie Favre University of Grenoble (France)
Jesus Garcia-Molina Universidad de Murcia (Spain)
Cesar Gonzalez-Perez Incipit, CSIC (Spain)
Jeff Gray University of Alabama (USA)
Esther Guerra Universidad Autónoma de Madrid (Spain)
Robert Hirschfeld Hasso-Plattner-Institut (Germany)
Gerti Kappel Vienna University of Technology (Austria)
Philipp Kutter Montages AG (Switzerland)
Stephen Mellor Freeter (UK)
Richard Paige University of York (UK)
Alfonso Pierantonio (co-chair) Università degli Studi dell’Aquila (Italy)
Bran Selic Malina Software Corp. (Canada)
Jim Steel University of Queensland (Australia)
Jesús Sánchez Cuadrado Universidad Autónoma de Madrid (Spain)
Antonio Vallecillo Universidad de Málaga (Spain)
Mark Van Den Brand TU/e (The Netherlands)
Vadim Zaytsev CWI (The Netherlands)

Table of Contents

Agile versus MDE - Friend or Foe? . 1
Jon Whittle

Programmatic Muddle Management . 2
Dimitrios S. Kolovos, Nicholas Matragkas, Horacio Hoyos Rodriguez, Richard F.
Paige

Extending Agile Practices in Automotive MDE . 11
Ulf Eliasson, Hkan Burden

Supporting Agility in MDE Through Modeling Language Relaxation 20
Rick Salay, Marsha Chechik

Pending Evolution of Grammars . 28
Vadim Zaytsev

Language Support for Megamodel Renarration . 36
Ralf Laemmel, Vadim Zaytsev

An Approach for Efficient Querying of Large Relational Datasets with OCL based
Languages . 46
Dimitrios S. Kolovos, Ran Wei, Konstantinos Barmpis

Keynote

Agile versus MDE - Friend or Foe?

Jon Whittle

Lancaster University

Agile methods and MDE are often considered to be polar opposites of each
other. Agile methods are fast, adaptive, responsive; MDE is heavyweight, plan-
first, and requires high up-front investment. But are agile methods and MDE
really so contradictory? Or could they co-exist and even work together to max-
imize each other’s benefits? In this talk, I will reflect upon our recent study
with two large companies that have both recently introduced agile methods into
a model-driven environment. I will describe where they succeeded, and failed.
And discuss how MDE tools do or do not support working in an agile manner.
This is joint work with Hakan Burden and Rogardt Heldal.

Jon Whittle is Full Professor and Chair of Software Engineering at Lancaster Uni-

versity’s School of Computing and Communications. He is well known for his work

in software modeling, scenario-based requirements engineering, aspect-oriented soft-

ware development, and, more recently, empirical studies of model-driven development

in practice. He leads two research groups at Lancaster - one on software engineering

and one on social computing. He has been on the PC of most major software engineer-

ing conferences, including ICSE, ASE, MODELS, AOSD, RE, SPLC. He chaired the

MODELS Steering committee from 2006-2008, was PC Chair for MODELS 2011, and

Experience Track Chair for MODELS 2006.

1

Programmatic Muddle Management

Dimitrios S. Kolovos, Nicholas Matragkas,
Horacio Hoyos Rodríguez, and Richard F. Paige

Department of Computer Science, University of York,
Deramore Lane, York, YO10 5GH, UK
{dimitris.kolovos, nicholas.matragkas,
hhr502, richard.paige}@york.ac.uk

Abstract. In this paper we demonstrate how diagrams constructed us-
ing general-purpose drawing tools in the context of agile language de-
velopment processes can be annotated and consumed by model manage-
ment programs (such as simulators, model-to-model and model-to-text
transformations). The aim of this work is to enable engineers to engage
in programmatic model management early in the language development
process, so that they can explore whether or not the languages and mod-
els constructed are fit for purpose. We demonstrate a proof-of-concept
prototype developed atop the Epsilon platform and a flexible graph def-
inition language (GraphML).

1 Introduction

The quality and usefulness of a Domain Specific Language (DSL) depends on
accurately identifying the domain concepts, their features and relationships. As
such, the involvement of domain experts in the language development process
is crucial. In the early stages of the language development process, domain ex-
perts often provide informal example diagrams/sketches from which engineers
can infer a first version of the metamodel of the envisioned language. To ob-
tain additional feeback, engineers then need to develop an initial version of a
language-specific modelling tool that enables domain experts to further experi-
ment with the language. This typically constitutes the first step of an iterative
process during which the metamodel of the language can undergo several revi-
sions. When 3-layer modelling frameworks such as MOF/EMF are used, for each
change in the metamodel, language engineers need to update and re-deploy a new
version of the modelling tool, and for non-additive changes to the metamodel
they also need to provide support for automated migration of older models.

To achieve shorter and more efficient iteration cycles, several techniques that
challenge this top-down metamodel-centric approach have recently been pro-
posed. In such approaches, the early phases of the language development process
involve the construction of example diagrams using flexible drawing tools, which
can be used to (semi-)automatically infer a rigid metamodel only once sufficient
confidence in the completeness and maturity of the language has been developed.

In this paper we argue that example diagrams constructed in the context of
this process should also be processable by model management programs (such

2

as simulators, model-to-model and model-to-text transformations) so that engi-
neers can develop additional and early confidence that the constructed language
is fit for purpose. The rest of the paper is organised as follows. In Section 2 we
provide an overview of related work in the field of bottom-up and agile metamod-
elling. In Section 3 we illustrate an approach for enabling engineers to engage in
programmatic model management activities early in the language development
process, and demonstrate a proof-of-concept prototype developed atop the Ep-
silon platform and a flexible graph definition language (GraphML). In Section 4
we conclude and provide directions to further work.

2 Background and Motivation

In [1], the authors propose an example-driven approach where users are able to
construct informal diagrams using the Dia drawing tool, and these diagrams are
then used to infer appropriate metamodels in an interactive manner. Similarly,
in [2] the authors introduce a systematic semi-automated approach to create
visual DSLs from a set of domain model examples provided by an end-user.
The MetAmodel Recovery System (MARS) [3] is a semi-automatic inference-
based system for recovering a metamodel from a set of instance models through
application of grammar inference algorithms. This approach does not rely on
example models provided by end-users, but it relies on models, which no longer
conform to a metamodel due to its evolution. In [4], the authors present a tool
(GraCoT) that supports co-development of EMF models and metamodels, in
a loosely-coupled manner that promotes agility and simplifies the process of
co-evolution.

To our knowledge, research in this area so far has focused solely on agile
model construction and automated metamodel inference. In our view, to further
validate the maturity and completeness of a metamodel, it is also important for
language engineers to develop some confidence that models conforming to this
metamodel can support the automated model management operations involved
in the envisioned MDE workflow (simulation, model-to-model and model-to-text
transformation etc.)

3 Proposed Approach

In this paper we illustrate an approach for rendering diagrams constructed using
general-purpose drawing tools amenable to programmatic model management.
An overview of the proposed approach is illustrated in Figure 1. Consistently
with previously-proposed bottom-up metamodelling techniques, in this approach
language engineers and domain experts can start the language development pro-
cess by drawing diagrams depicting example models, which (conceptually) con-
form to the envisioned language, using a general purpose diagram drawing tool.

In the next stage, engineers can augment these conceptual diagrams using
a set of predefined textual annotations (discussed in Section 3.2) to specify the

3

types and features of diagram elements of interest in an agile manner. Anno-
tated diagrams are then automatically transformed into an intermediate repre-
sentation (muddle) that can be programmatically managed using existing model
management languages.

In this work we use GraphML, the conceptual metamodel of which is illus-
trated in Figure 2, for diagram drawing, and languages of the Epsilon platform
[5] for automated model management, but in principle this approach should be
applicable to other diagram formats and model management languages.

Fig. 1. Process Overview

Fig. 2. GraphML Metamodel

3.1 Running Example

We illustrate the process of constructing, annotating, and programmatically
managing GraphML diagrams through a running example. In this example, our
aim is to define a flowchart language that supports timed events and delays. To
develop some confidence that the envisioned language is feature-complete, we
also need to implement a proof-of-concept program that can execute/simulate
models that conform to the language.

4

We start by using the yEd1 GraphML-compliant tool to draw an example
diagram that conceptually conforms to the envisioned flowchart language. The
diagram, illustrated in Figure 3 consists of labeled rectangles which conceptually
represent actions, a diamond which represents a decision, directed edges which
represent transitions, a hexagon that represents the triggering event, a circle
which represents a delay, and a hexagon which represents the time at which the
attached event should fire for the first time.

Fig. 3. Flowchart Diagram

We now take a leap and in Listing 1.1 we present the implementation of
a simple simulator for such flowcharts, expressed in the Epsilon Object Lan-
guage [6], an imperative OCL-based model query and transformation language.
We provide a brief overview of the behaviour and the organisation of the simu-
lator and then demonstrate how we need to annotate the diagram of Figure 3
so that the simulator program can use it as an input model that can drive its
execution.

1 var event = Event.all.selectOne(e|e.entryPoint = true);
2 var time = event.time.hours.toMinutes();
3 event.process();
4
5 operation Event process() {
6 ("Event: " + self.name + " at " + time.toHours()).println();
7 self.outgoing.at(0).target.process();
8 }
9

10 operation Action process() {
11 ("Action: " + self.name).println();
12 if (not self.outgoing.isEmpty()) {
13 self.outgoing.at(0).target.process();
14 }
15 }
16 operation Decision process() {
17 ("Decision: " + self.name).println();
18 var random = self.outgoing.random();
19 ("Chose: " + random.name).println();
20 random.target.process();
21 }
22
23 operation Delay process() {
24 time = time + self.mins;
25 ("Waited for " + self.mins + "mins").println();

1 http://www.yworks.com/en/products_yed_about.html

5

26 self.outgoing.at(0).target.process();
27 }
28
29 operation String toMinutes() : Integer {
30 var parts = self.split(":");
31 return parts[0].asInteger() * 60 + parts[1].asInteger();
32 }
33
34 operation Integer toHours() : String {
35 return (self / 60).asString().pad(2, "0", false) +
36 ":" + (self - (self / 60)*60).asString().pad(2, "0", false);
37 }

Listing 1.1. Simple flowchart simulator

– Assuming that a flowchart can contain many events, in line 1 we select one
event that has its entryPoint attribute set to true;

– In line 3, we keep a copy of the time (converted to minutes) at which this
event is fired for the first time;

– In line 4, we process the target of the first outgoing transition of the event;
Calls to process() operations are dynamically dispatched depending on the
type of their context object, and behave as discussed below;

– The Event.process() operation prints a message and processes the target of
its first outgoing transition;

– The Action.process() operation prints a message and then, if the action has
any outgoing transition, it processes the target of the first of them;

– The Decision.process() operation chooses a random outgoing transition, prints
its name and processes its target;

– The Delay.process() operation adds the delay time to the global time, prints
a message and then processes the target of its first outgoing transition;

– The toMinutes() and toHours() operations can convert HH:MM-formatted
time strings to integers (number of minutes) and vice versa.

A sample execution trace of the simulator appears below.

1 Event: Alarm clock rings at 08:00
2 Action: Wake up
3 Decision: Is it too early?
4 Chose: yes
5 Action: Hit snooze
6 Waited for 10mins

7 Event: Alarm clock rings at 08:10
8 Action: Wake up
9 Decision: Is it too early?

10 Chose: no
11 Action: Get up

3.2 Annotating GraphML Diagrams

To facilitate the execution of model management programs such as the one il-
lustrated in Listing 1.1, we need to annotate diagram elements with additional
information. For example, we need to declare that the type of all rectangle nodes
in this diagram is Action, and that the type of directed edges is Transition. As
GraphML does not provide built-in support for capturing type-related informa-
tion for nodes and edges, we need to use GraphML’s extensibility facilities2 to
define Type extension fields for nodes and edges.
2 http://docs.yworks.com/yfiles/doc/developers-guide/graphml.
html

6

The value of the Type extension field of a node/edge needs to adhere to the
name (> name)* pattern, where > is used to denote inheritance. For exam-
ple, by setting the Type field of the Wake up node to Action > FlowchartEle-
ment, we define that the node is an instance of the Action type, and that the
FlowchartElement type is a super-class of Action. All types are unique by name
and are created the first time they are encountered in the diagram. For example,
by subsequently setting the Type field of Hit snooze to Action, we are reusing
the Action type defined in Wake up instead of creating a new one. Beyond type-
related information, we also need to capture additional information using the
following GraphML extensions summarised in Table 1.

Table 1: GraphML extensions

Extension For Description Pattern
Properties Node,

Edge
Descriptors and values
for primitive attributes of
nodes/edges

(int|String|boolean|real)?
(*)? name (= value)?

Default Node,
Edge

Descriptor of the slot under
which the first label of the
node/edge should be made ac-
cessible

(int|String|boolean|real)?
name

Source role Edge Descriptor of the role of the
source end of the edge

name (*)?

Target role Edge Descriptor of the role of the
target end of the edge

name (*)?

Role in source Edge Descriptor of the role of the
edge in its source node

name (*)?

Role in target Edge Descriptor of the role of the
edge in its target node

name (*)?

The value of the Properties field of a node/edge can contain zero or more
lines of text. Each line needs to adhere to the pattern above and define the
type, multiplicity, name and value of the property. For example, by setting the
value of the Type field of the Alarm clock rings node to Event and the text of
its Properties field to boolean startEvent = true, we define that the node has a
single-valued boolean startEvent property, with a value set to true.

The value of the Default field should conform to the pattern above and define
the name of the default slot of the node/edge and, optionally, its primitive type
(defaults to String). For example, by setting the Default field of the Wake up
node to name, the first label of the node that does not match the property
descriptor pattern (in this case, the Wake up label), will be made accessible
through a name property of type String.

The values of the Source role, Target role, Role in source, and Role in target
fields of an edge define the name and multiplicity of the respective roles. For
example, in the yes transition we define the following values for these properties:

7

Source role: source, Target role: target, Role in source: outgoing *, Role in target:
incoming *.

3.3 Deriving a Muddle

The next step of the process is to parse the annotated GraphML diagram and
construct an intermediate model (muddle) that conforms to the metamodel of
Figure 4. This is achieved through a multi-pass transformation which is trans-
parent to the end-user and which comprises the following steps.

Fig. 4. Intermediate (Muddle) Metamodel

1. For every typed node in the graph, it creates an empty MuddleElement in
the intermediate model and its corresponding MuddleElementType (if the
latter does not already exist). It also looks for nodes for which the Default
field has a valid value. When this happens, the value of the Default field is
used to produce a primary Feature which is added to the type of the created
MuddleElement ;

2. Iterates through the created elements and creates/populates their slots, based
on the descriptors provided in the Properties field of the node. Again, for
each new property a Feature is created and added to the type of the ele-
ment. As such, by setting the value of the Properties field of Alarm clock
rings to boolean startEvent = true, all model elements of type Event obtain
a single-valued startEvent boolean feature;

3. Iterates through the labeled and untyped edges of the graph (e.g. the time
edge in the diagram of Figure 3). For each edge, it adds an untyped Feature
to the type of its source muddle element, a respective Slot to the source
muddle element, and adds the target of the edge to the values of the slot;

4. Iterates through the unlabeled and untyped edges of the graph and attempts
to fit their targets into appropriate slots of the source muddle elements (i.e.
slots that already contain at least one value of the same type);

8

5. For every typed edge of the graph it creates an empty MuddleElement and
its corresponding LinkElementType, similar to what was discussed for nodes
in step 1. It also attempts to create primary, role in source, role in target,
source and target Features for the created LinkElementTypes;

6. Iterates through the typed edges of the graph and creates/populates their
slots similar to what was discussed in step 2;

7. Adjusts the multiplicities of features based on the maximum number of values
of their slots. In this process, single-valued features, slots of which contain
more than one values become multi-valued (but not the opposite).

3.4 Consuming Muddles in Epsilon Programs

Epsilon provides an abstraction layer (Epsilon Model Connectivity – EMC3)
that shields the languages of the platform from the intricacies of concrete model
representations and enables them to access models conforming to a wide range of
technologies. To enable Epsilon languages to access muddles, we have developed
a new driver that implements the set of interfaces required by EMC. Due to
space restrictions, a detailed discussion on the new driver is beyond the scope of
this paper.

The driver enables all languages in Epsilon to query muddles. For example,
in addition to the simulator of Listing 1.1, Listing 1.2 demonstrates an exemplar
constraint written in the validation language of the platform (EVL4), and Listing
1.3 demonstrates an exemplar model-to-text transformation written in EGL5.

1 context Decision {
2 constraint HasMoreThanOneOutgoingTransitions {
3 check: self.outgoing.size() > 2
4 message: "Decision " + self.name + " needs to have at least 2 outgoing

transitions"
5 }
6 }

Listing 1.2. Validation constraint for flowchart models

1 The flowchart has [%=Action.all.size()%] actions:
2 [%for (action in Action.all) {%]
3 - [%=action.name%]
4 [%}%]

Listing 1.3. Model-to-text transformation for flowchart models

4 Conclusions and Further Work

In this paper we have argued for the importance of enabling engineers to engage
in exploratory model management operations early on in the language devel-
opment process and demonstrated an approach and a prototype that enables
3 http://www.eclipse.org/epsilon/doc/emc
4 http://www.eclipse.org/epsilon/doc/evl
5 http://www.eclipse.org/epsilon/doc/egl

9

engineers to annotate and programmatically manage GraphML diagrams using
languages of the Epsilon platform. In the future, we plan to investigate support-
ing additional GraphML constructs such as subgraphs and hyperedges.

In our view, while constructing diagrams using using general-purpose draw-
ing tools can be very useful in the early phases of the language development
process, it can become cumbersome and error-prone as the example diagrams
and the DSL become larger and more mature - at which stage a transition to a
language-specific modelling tool should be consider. To reduce the overhead of
this transition, we plan to investigate inferring annotated metamodels that can
then be consumed by tools such as Eugenia6 to automatically generate language-
specific model editors.

Acknowledgements

This research was part supported by the EPSRC, through the Large-Scale Com-
plex IT Systems project (EP/F001096/1) and by the EU, through the Auto-
mated Measurement and Analysis of Open Source Software (OSSMETER) FP7
STREP project (318736).

References

1. Jesús Sánchez-Cuadrado, Juan Lara, and Esther Guerra. Bottom-up meta-
modelling: An interactive approach. In Robert France, Jürgen Kazmeier, Ruth
Breu, and Colin Atkinson, editors, Model Driven Engineering Languages and Sys-
tems, volume 7590 of Lecture Notes in Computer Science, pages 3–19. Springer
Berlin Heidelberg, 2012.

2. Hyun Cho, J. Gray, and E. Syriani. Creating visual domain-specific modeling lan-
guages from end-user demonstration. In Modeling in Software Engineering (MISE),
2012 ICSE Workshop on, pages 22–28, 2012.

3. Faizan Javed, Marjan Mernik, Jeff Gray, and Barrett R. Bryant. Mars: A metamodel
recovery system using grammar inference. Inf. Softw. Technol., 50(9-10):948–968,
August 2008.

4. Villalobos J. Gómez P., Sánchez M. Gracot, a tool for co-creation of models and
metamodels in specific domains. In Proc. Academics Tooling with Eclipse (ACME
2013) at European Conference on Object-Oriented Programming (ECOOP2013).
ACM, 2013.

5. Richard F. Paige, Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos, Fiona
A.C. Polack. The Design of a Conceptual Framework and Technical Infrastruc-
ture for Model Management Language Engineering. In Proc. 14th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, Potsdam, Ger-
many, 2009.

6. Dimitrios S. Kolovos, Richard F.Paige and Fiona A.C. Polack. The Epsilon Object
Language. In Proc. European Conference in Model Driven Architecture (EC-MDA)
2006, volume 4066 of LNCS, pages 128–142, Bilbao, Spain, July 2006.

6 http://www.eclipse.org/epsilon/doc/eugenia

10

Extending Agile Practices in Automotive MDE

Ulf Eliasson1 and H̊akan Burden2

1 Volvo Car Corporation, Sweden
ulf.eliasson@volvocars.com

2 University of Gothenburg, Sweden
burden@cse.gu.se

Abstract. The size and functionality of the software in a modern car in-
creases with each new generation. To stay competitive automotive man-
ufactures must deliver new and better features to their customers at the
same speed or faster than their competitors. A traditional waterfall pro-
cess is not suitable for this speed challenge - a more agile way of working
is desirable. By introducing MDE we have seen how individual teams at
Volvo Cars adopt agile practices, resulting in tensions while the organi-
zation at large still uses a waterfall process. In an exploratory case study
we interviewed 18 engineers to better understand how agile practices
can be extended beyond individual teams. Where the tensions have their
source in the technical specification of the software components and their
interfaces, it turns out that it is company culture and mindsets that are
the main hurdles to overcome.

Keywords: Interface Specification, Tailoring, Exploratory Case Study

1 Introduction

The size and functionality of the software in a modern car increases with each
new generation [1] and the software can be executing on in the order of 100
Electronic Control Units (ECUs) spread out in the car. This causes software
development to take an increasing part of the total R&D budget for new car
models [2]. Automotive manufacturers are traditionally mechanical and hard-
ware oriented companies. The software processes often resemble the traditional
waterfall since that works for mechanical development - but it might not neces-
sary be the best for developing software. In a world that moves faster and faster
it is crucial to push new features out faster than the competitors. One way that
automotive manufactures can speed up their software process is to develop more
software in-house, making it possible to iterate their software and introduce new
features faster than when ordering the same from a supplier. By introducing
MDE we have seen that the domain experts are directly involved in the software
implementation and how lead times become shorter.

2 Automotive Software Development at VCC

The system development process at Volvo Car Corporation (VCC) is a waterfall
process with a number of integration points throughout where artifacts should

11

System design/
SDB

MIL
HIL Prototype

car

SWC

ECU

Mechanical

Fig. 1. Overall process view.

be delivered. There are three tracks of parallel development - the software com-
ponents (SWC), the hardware (known as electronic control units or ECU) and
the mechanical parts. Parts of the software is developed in-house while the rest
of the software, and most hardware and mechanical systems are developed by
sub-contractors. Each iteration of the process has a number of integration steps,
as shown in Fig. 1. The system design and signal database (SDB) is the first
integration step where the software and its interfaces are designed. Model-In-
the-Loop (MIL) is where the implementation Simulink-models are integrated
together with other models, either single components together with test models
for testing, or in complete MIL with models of different components from dif-
ferent teams. After code generation from the implementation models they are
integrated in Hardware-In-the-Loop (HIL) executing on hardware but with the
environment around it simulated with models executing in real-time. Finally
everything is integrated in a prototype car.

Early on, all the requirements and the system design for the next iteration
is captured as a model inside a custom-made tool, referred to as SysTool. The
model contains, among many things, software components, their responsibilities
as requirements, the software components deployment on ECUs, and the com-
munication between them as ports and signals. The signals are basically periodic
data that is sent, and they are described down to the byte size of their data types.
The signal definition also includes timing requirements, such as frequency and
maximum latency. At a certain point in time the model is frozen and no new
changes are allowed until the next iteration starts. These freezes usually last for
20 weeks.

The SysTool model is used for two things. Firstly, signals, ports and their
connections and timing requirements are used to implement the SDB. The SDB
is used by the software on the ECUs and the internal network nodes to sched-
ule all the signals passing through the networks in the car. The packing and
scheduling of the signals is done manually. It takes 9 weeks from a freeze until
the SDB is delivered and ready to be used. Secondly, the component model is
transformed into Simulink model skeletons. Each Simulink model represents an
ECU with skeletons of the deployed software components, including ports and
connections. These models are then filled in with functionality by the developers
as specified by textual requirements. If the system model changes the Simulink
models are updated to reflect this by a click of a button and any implementation
already done is kept intact. The implementation must be updated manually if
it is dependent on signals that are removed or changed.

12

The executable Simulink models are tested together with plant models. The
plant models represent the environment surrounding the ECUs, including electri-
cal, physical and mechanical systems. This enables the developer to get instant
feedback by running and testing the models s/he developed in isolation on their
own PCs. The models are also integrated in a virtual car MIL environment where
all models developed in-house are integrated and executed. The time frame for
getting feedback after delivering a model to the virtual car is counted in days.
This gives the developers a possibility to do requirements and design explo-
ration and validation on component level. However, sub-contractors developing
software do not normally provide models of their software meaning that where
suppliers are developing functionality there are holes in the MIL environment.
These holes are filled in by models describing how to develop their software as
they see fit, as long as they can fit their work in to the larger overall process
and deliver in time. Therefore development within the Simulink models for one
ECU can and is conducted agile. However, as soon as there is a need to extend
or modify the SDB the developers need to adapt to the overall waterfall process.

The suppliers deliver their software as binaries. Code is generated from the
in-house models, built to binary and then the two are linked together. The
finished software is loaded on hardware and is then tested on HIL rigs, see Fig
1. Because the supplier only delivers binaries this is the first time that in-house
and supplier developed software can be integrated and validated together. Later,
software and hardware is integrated with the mechanical systems in a complete
prototype vehicle and tested. This is the first time that the whole system is
tested together. Each full iteration in Fig 1 has a deadline referred to as a gate
and the time between the gates is referred to as E-series.

The use of MDE in the teams makes it possible to break free from the suppli-
ers making it possible to execute and test the in-house software without having
to wait for the hardware and software from the suppliers. This enables the team
to be agile and work in short iterations.

3 Method

Given that agile practices have shown to be possible at the level of individual
teams, we wanted to answer the question:

RQ: Which are the challenges and possibilities for a more agile software devel-
opment process on a system level?

To answer the question we conducted an exploratory case study [3]. The
main data was collected through two parallel interview series, conducted by the
two authors independently of each other. The first set included eight interviews
where the first interview was conducted in May 2012. Both sets of interviews
were finished by April 2013. Since the interviews were conducted over such a
long time frame collecting and analyzing the data was done in an incremental
fashion [3]. In a first step the analysis aimed to identify themes and concepts that
had a negative effect on how agile the engineers’ could be in their development,

13

in the second step the interviews were used to explore to which degree the
themes and concepts could be confirmed [4]. The interviews were semi-structured
which allowed the interviewers to explore new topics as they arose but also to
see if spiring hypotheses could be confirmed [5]. In general the interviewees
had a background in electronics, physics, automation or mechanical engineering
with a limited training in software development from VCC. All interviews were
conducted at VCC in Gothenburg, Sweden. The interviews were complemented
by active participation by one of the authors and on-site observations by the
other. After the analysis of the interviews had been completed a system architect
involved in the scheduling of the SDB was interviewed to reflect on the outcome
of the analysis.

4 Challenges for Agile MDE Practices

From our interviews we discovered a number of issues that have their roots in the
waterfall process used on a system level. The most prominent issue, repeated by
different interviewees, concerned the SDB in the SysTool. By freezing require-
ments and system design such a long time before delivery developers are forced
to take premature decisions on what data they need to receive or send and where.
Because the signals are the interfaces between different components, developed
by different teams or sub-contractors, any negative impacts caused by premature
decisions are not discovered until late in integration and therefore expensive to
change.

The practice of freezing the interface implies that the engineers have to spec-
ify the interface they need before they fully understand the internal behaviour
of the component being developed. This means that the interfaces are defined
based on the assumptions the developer have at that time and subsequently
there are signals that will never be used but still have a share of the limited
capacity. This causes two problems. First extra signals need to be scheduled on
the network, wasting time for the SDB group in their work as well as causing
extra congestion on the network. It also makes it difficult for a developer on an
ECU to know which signals are used or not used.

Q: So do you overload the interface? Throw in a signal just in case?
A: Yes, that is what we do. At least I do it [. . .] and then you end up with

the problem knowing which signal it is you should actually use.
As with the spare signals above, developers add extra data-elements to their

signals they create to future-proof them. This causes the same problems as with
the spare signals but is also harder to redeem because one can’t just remove a
signal, the signal needs to be modified. It is also harder to check if a data element
is used or not compared to seeing if a whole signal is used.

A: Also an old problem we have here at Volvo is that when someone wants
to add a new signal, they know it will be hard to change the signal later. So to
be prepared they add a few extra data bits to the signal, just in case.

Developers that figure they need to send or receive some data that they
did not think about before the freeze do not want to halt their implementation

14

until the next freeze, instead they use existing signals in creative ways. This
includes using signals and data-elements in ways that are not described in the
requirements making them behave differently than intended. When other groups
depend on these signals misinterpretations occur which causes problems.

A: But we have a text document that’s about 300 or 400 pages in total if you
take all the documents. And that hasn’t been updated for a couple of years. So
this is wrong. This document is not correct.

Since the textual documentation is inconsistent with the implementation and
the interface is overloaded the engineers start to mistrust the artifacts that are
supposed to support them in their development. As a consequence one of the
other interviewees had developed a work-around for handling that the interface
specification was constantly outdated. The solution is to sieve through a second
document after the information that concerns the interface being developed and
translate that information into a new, temporary, specification.

A: We have in our requirements a list of signals used in the requirement.
Now that list is seldom updated. It’s hardly ever, so they’re always out of date.
So I don’t actually read them anymore. I just go in through the specific sub-
requirements and I read what is asked for my functionality. This is asked. What
do I need? I need this and this. So, yeah, so I do it manually, I guess.

The reoccurring theme behind these issues are that developers are forced to
make unfounded assumptions about what the SDB will or needs to contain and
how the signals in it will be used. Also a shared view between the developers
was that it is the development of mechanical and hardware systems and the
MDE tools that forced the use of a waterfall process. The issues caused by these
assumptions are not found until late in the process with a considerable cost in
both time and money as the result.

5 Possibilities for Extending Agile MDE Practices

Based on the results from previous interviews we interviewed an architect re-
sponsible for tool and process development at VCC and brought up the iden-
tified challenges. He did not see the technical problems of the SysTool and its
models to be the main obstacle to overcome, rather it is the culture and the way
of thinking in the organization that needs to change.

Q: Why do we have these freezes?

A: We have a traditional gated process, and then you have freezes and gates
for everything, period. [. . .] If we think waterfall it is very logical that we have
these freezes, that is what we have to rethink completely. What I’m thinking is
that we need to change our system definition process so that it is agile and we
can make changes whenever we want [. . .] and then we can drive this in different
speed with different suppliers but it shouldn’t be our process that is stopping us.

He also did not think that the hardware development done in parallel re-
quires a waterfall system development process with gates. However, working
with suppliers is one reason for having the gated system development process.

15

Q: How much does it have with working against suppliers and developing
hardware?

A: Yes, that is part of the answer. The connection to hardware I do not
see as very strong, because the hardware development is not really in the same
cycles anyway. Of course, we have hardware upgrades and when it affects the
software then it has that connection, if there is some sensor or something that is
replaced, but many of these problems are about changes to signals on the network
and that is not connected to hardware at all really, at least not at that level. So
the hardware is not a big factor. But supplier interaction is of course a factor,
because we have a way of working with the supplier where we tell them that on
this day we will send the specification and this day you will deliver, and there
is a number of weeks between when we send the requirements and they should
deliver and then we need a freeze so that we have something to send.

The time between freezing the database until there is a finished implemen-
tation of that version, is 9 weeks. Because the developers know that this is their
last chance for a while to change the signals they wait until the last minute to
put any requests for new or changing signals as close to the freeze as possible.
Obviously this results in a lot of change requests to be processed at the same
time. It is not until after the freeze that signals and other changes are checked
for compatibility and consistency, which might result in a lot of work to make
the system design model consistent again.

A: If we say that at this point in time you should submit all your change
requests then you get all of these the Friday before instead of getting them more
continuously and then you have these weeks of job ahead of you. [. . .] We need
to start thinking about the SDB and frame packing as a product, like any node.
So the nodes deliver their software and the SDB delivers the frame packing as
a component that integrates with the other stuff. So instead of having a process
where the frame packing and everything needs to be finished and done before you
can start making a node it should be something that you integrate with the other
stuff. [. . .] Integration is something that already today is happening continuously.
It is not a specific day we integrate it is something you try during the E-series
and in the end you make it work and then it is time for the next one. [. . .] At
the gate between E-series we do a refactoring of the SDB, clean it up and pack
it. What I think is that, we should continuously allow ourselves to add signals,
and also allow each other to add redundant signals. If one signal is wrong we do
not remove that signal, because the components are expecting to get this signal.
But we can all the time allow ourselves to add signals and therefore we can get
double, triple or quadruple signals when we find our way forward. This is roughly
as you work with product lines, you allow yourself to over-specify interfaces and
so on.

In this way the SDB is tidied up at each gate instead of defined at the system
design phase within each iteration.

A: Working like this we can basically end up at releasing a SDB every day
throughout the series and as long as a test or E-series environment is alive we

16

can release a SDB daily where we can add new signals to test. Then we can allow
ourself to deliver in what frequency we want.

Q: It sounds like most things that need to change are soft issues, are there
no technical obstacles for this?

A: No, not really. There is a need for more support in SysTool to make
sure that additions that you make are backward compatible. Today this is mostly
a manual process. So you need to build in locks so, for this E-series you can
only introduce backward compatible changes so that we all the time can export
a correct export. And a lot of the stuff that we manually need to clean up is
checked automatically. So there are some small tool changes. But this is not the
big thing, it is how we think and how we work.

The system model doesn’t have to be executable, a non-executable model is
enough for the checks that are needed. Also, because the system model is used
to generate shells that are filled with executable Simulink models, developers
might not see a need or purpose with having more executable models.

A: We will still have these E-series where there will be some refactoring, and
to release such an E-series will still take two to three weeks to pack, so it might
not be nine weeks but it might be four to five weeks before an E-series release
that you need to say what you want in that release. However, the difference from
now is that this is not your last chance to get things in it, it is just what will be
in it from day one in this series. Then after this you will be able to get things
into it as long as it is living.

Because the software development cycles are not bound to the hardware or
mechanical development there is no need to follow a similar waterfall process.
Also, a more agile system development process would not force the suppliers to
be more agile, instead it would make it possible for the teams and their suppliers
to work out the best way of working between them. Therefore we can use a more
agile process, as already practiced by some of the ECU teams, on a system level.
To enable this transition the SysTool needs to support static consistency checks,
as proposed by [6], to give the developers and architects confidence in that the
changes they make are backward compatible and will not break the integration.

6 Related work

Pernst̊al [7] has conducted a literature study of lean and agile practices in large-
scale software development, such as in the automotive industry, concluding that
there is a lack of empirical research within this area.

Eklund and Bosch [8] have developed a method and a set of measures to
introduce agile software development in mass-produced embedded systems de-
velopment, including automotive development. They have discovered that part
of introducing agile methods is to gain acceptance in the organization for grad-
ual growth and polishing of requirements instead of using a waterfall approach.
They also say that it is possible to have agile software development even though
the product as a whole is driven by a plan-driven process.

17

Kuhn et al. [9] and Arnanda et al. [10] have investigated MDE at General Mo-
tors. However, they have not looked at how MDE could change the process and
help overcome some of the problems with the traditional process for developing
automotive systems.

7 Conclusion and Future Work

The interviewees often thought that the agile challenges were related to MDE
or the used tools. However, during the interview with one of the responsible
architects for the tools and processes he identified them as caused by the process
used on a system level. MDE would be the enabler for a more agile way of working
as it provides the teams with a way of testing and iterate their design without
having to wait for supplier software or hardware. To get the suppliers on board
in such a way of working will take time. But a more agile system development
process would not force the teams and suppliers to change their current way of
working, but it enables teams and suppliers to agree on a way of working that
suits them best instead of forcing them to fit in to the waterfall development
process.

We have during our research discovered that agile MDE can be beneficial for
automotive development. Using a language close to the domain, such as Simulink,
enables engineers trained in the specific domain to work in an environment they
recognize and can express their solution in. A model based environment where
one can do physical modeling also enables the developers to quickly test their
solutions on their own PCs. These are enablers for a more agile development
process than is currently the norm in the automotive industry.

We have also discovered that the hardware or mechanical development does
not force the software development to follow a waterfall process. The software
development is so independent it could have its own process on top of hardware
and mechanical development. A more agile software development process would
also make it easier to adapt to changes in hardware or mechanical systems.

The interaction with sub-contractors is one of the obstacles that needs to be
bridged before agile can happen on all levels. However, a more agile software pro-
cess on the system level would permit the individual teams and sub-contractors
to interact in any way they would think is best instead of forcing them to follow
and fit it in to the waterfall process. Some systems are naturally less appropriate
to develop in a completely agile way, such as brakes, and others are so stable and
well known that there is little benefit or need for agile development. But having
the software process on the system level agile doesn’t mean that these domains
have to be developed agile, the sub-processes can still be as strict as they need.

The natural thing would be to try to spread the agile MIL environment in
all directions and tailor the process [11] to utilize the possibilities of the tools.
A first step to enable such a transition would be to allow for faster iterations of
the SDB and extending the SysTool to do static consistency checks.

For the future, we plan to implement some of the proposed changes in section
5 to the process at parts of VCC and evaluate them, including looking at how

18

external actors can be integrated in a more agile way of working. Changing a
large organization will take time [12]. By starting bottom up we hope that the
acceptance for change will be easier to achieve in respect to in-house developers
[8] but also for building trust with sub-contractors [13].

References

1. Ebert, C., Jones, C.: Embedded software: Facts, figures, and future. IEEE Com-
puter 42(4) (April 2009) 42–52

2. Broy, M.: Challenges in automotive software engineering. In: Proceedings of the
28th international conference on Software engineering. ICSE ’06, New York, NY,
USA, ACM (2006) 33–42

3. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14 (December 2008) 131–
164

4. Seaman, C.: Qualitative methods in empirical studies of software engineering.
IEEE Transactions on Software Engineering 25(4) (1999) 557–572

5. Robson, C.: Real World Research. 2nd edn. Regional Surveys of the World Series.
Blackwell Publishers (2002)

6. Rumpe, B.: Agile modeling with the UML. In Wirsing, M., Knapp, A., Balsamo,
S., eds.: Radical Innovations of Software and Systems Engineering in the Future.
Number 2941 in Lecture Notes in Computer Science. Springer Berlin Heidelberg
(January 2004) 297–309

7. Pernst̊al, J.: Towards Managing the Interaction between Manufacturing and Devel-
opment Organizations in Automotive Software Development. PhD thesis, Chalmers
University of Technology, Gothenburg, Sweden (2013)

8. Eklund, U., Bosch, J.: Applying agile development in mass-produced embedded
systems. In Wohlin, C., ed.: Agile Processes in Software Engineering and Extreme
Programming. Number 111 in Lecture Notes in Business Information Processing.
Springer Berlin Heidelberg (January 2012) 31–46

9. Kuhn, A., Murphy, G.C., Thompson, C.A.: An exploratory study of forces and fric-
tions affecting large-scale model-driven development. In France, R.B., Kazmeier,
J., Breu, R., Atkinson, C., eds.: Model Driven Engineering Languages and Systems.
Number 7590 in Lecture Notes in Computer Science. Springer Berlin Heidelberg
(January 2012) 352–367

10. Aranda, J., Damian, D., Borici, A.: Transition to model-driven engineering: what
is revolutionary, what remains the same? In: Proceedings of the 15th international
conference on Model Driven Engineering Languages and Systems. MODELS’12,
Berlin, Heidelberg, Springer-Verlag (2012) 692–708

11. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R.: Industrial
Adoption of Model-Driven Engineering: Are the Tools Really the Problem? In:
MODELS 2013, 16th International Conference on Model Driven Engineering Lan-
guages and Systems, Miami, USA (October 2013)

12. Aaen, I., Börjesson, A., Mathiassen, L.: SPI agility: How to navigate improvement
projects. Software Process: Improvement and Practice 12(3) (2007) 267–281

13. Christopher, M.: The agile supply chain: Competing in volatile markets. Industrial
Marketing Management 29(1) (January 2000) 37–44

19

Supporting Agility in MDE Through Modeling
Language Relaxation

Rick Salay and Marsha Chechik

University of Toronto
Toronto, Canada

{rsalay, chechik}@cs.toronto.edu

Abstract. Agility requires expressive freedom for the modeler; however,
automated MDE processes such as transformations require models to
conform to strict constraints (e.g. well-formed rules). One way out of this
apparent conflict is to allow a “relaxed” version of a modeling language to
be used by modelers and then use tool support to “tighten” such models
so that they are conformant to the original constraints. In this paper,
we explore the issues of relaxation and tightening of modeling languages
and discuss the possibilities for tool support.

1 Introduction

The problem of agility in MDE arises because models have two very different
kinds of users: humans and programs. Humans use models to express themselves
and communicate with each other. Programs manipulate models to do analyses
or transform them into other models. These two types of users give rise to a
modeling dilemma: humans want expressive freedom and can cope with relaxed
rules while programs need models to conform to precise constraints. How can
this agility conflict be reconciled?

In this paper, we propose a transformation-based framework for addressing
the agility conflict for a given modeling language by meeting the needs of both
kinds of users. Human needs are satisfied by relaxing the language to permit
greater expressive freedom. Program needs are satisfied by defining a tightening
transformation that converts the model in the relaxed language back into the
original, more strict, language.

We limit our scope by focussing on supporting two kinds of agility: omission
agility – allowing the modeler to omit information in the model in order to
express uncertainty, irrelevance, etc., and clarity agility – allowing the modeler to
express information in the model more concisely or differently to improve clarity.
Although our scope is limited, the usefulness of these forms of agility is justified
by work in the philosophy of language relating to human communication. For
example, Grice defines a “cooperative principle” that gives four maxims that
hold in effective human communication [4]: quantity – making the contribution
as informative as is required but no more informative than required; quality –
being truthful; relation – being relevant; and manner – being clear. Both types of

20

agility we handle address quantity, relation and manner. Quality is an orthogonal
issue and is unaffected by language relaxation.

The paper is structured as follows. In Section 2, we illustrate different aspects
of the two agility types using five examples. In Section 3, we give a preliminary
framework for language relaxation and tightening and show how it can address
our examples. Section 4 explores possible tool support for the framework. We
discuss related work in Section 5 and conclude in Section 6.

2 Language relaxation and tightening by example

A modeling language can be relaxed in several different ways. In this section,
we explore some of these possibilities using the examples depicted in Figure 1
(A-E), referring to these as Examples A-E, respectively. All of the examples use
the language of UML class diagrams (CD). In the discussion below, assume that
the metamodel of CD consists of a vocabulary defining the element and relation
types in the language and a set of constraints defining well-formedness – i.e., a
well-formed model must conform to the constraints. For each example, we first
state what the modeler is attempting to express and the type of agility required,
then describe the relaxation aimed to achieve this and finally, introduce the
tightening transformation required.

Example A. The modeler wants to express that she doesn’t yet know what sits
on the other end of the controlledBy association (omission agility). To do this,
she weakens the well-formedness constraint that a binary association must have
a class on both ends. The tightening transformation assigns a class to the target
of the controlledBy association. Since there is choice here (i.e., an existing class
or a new class), this choice must be resolved.

Example B. The modeler wants to express that in the parallel inheritance hi-
erarchies, the classes Car/Driver and Plane/Pilot are the intended pairings
with the controlledBy association (clarity agility). To do this, she uses the ver-
tical alignment in the layout to indicate the correspondences. Note that neither
the vocabulary nor the constraints of the concrete syntax are affected, but the
expressive power of the language is extended by giving the spatial relation of
vertical alignment a special meaning. The tightening transformation defines an
OCL constraint for each occurrence of the vertical alignment of a pair of classes
that extend Vehicle/Operator to enforce the intended constraint.

Example C. The modeler wants to indicate that she isn’t sure which class
should hold the park() operation (omission agility). To express this, she wants
to link park() to both classes but to do that, it would have to be simultane-
ously contained in two boxes. This “physical” constraint, which enforces the
well-formedness constraint that an operation is owned by one class, cannot be
weakened unless the boxes are made to overlap. Instead, for clarity, she opts
for extending the vocabulary to allow operations to be specified externally to a
class, using an ellipse and linked to the class with a dashed line (clarity agility).
The tightening transformation defines an operator element for each ellipse and

21

makes the linked class the owner. Since two possible owners are specified and
this violates a well-formedness constraint, there is a choice (i.e., which class is
the owner?) which needs to be resolved.

Example D. To reduce clutter, the modeler wants to put the name of the
class outside, but close to, its box (clarity agility). To do this, she weakens
the constraint that the class name is inside the box at the top. The tightening
transformation defines text close to a class box as being the name of the class.
To operationalize it, the definition of “closeness” must be given.

Example E. The modeler wants to express the fact that certain classes are
“connected” without being specific about the type of connection – it can be a
generalization, an association, etc. (omission agility). To do this, she extends the
vocabulary with a special dashed line to indicate this relation. The tightening
transformation resolves the dashed line to one of the class diagram relations that
can hold between classes. Since there is choice here, someone needs to make it.

3 Towards a framework for relaxation and tightening

Our ultimate goal is to develop a framework for the relaxation and tightening
of modeling languages to address the agility conflict. In this section, we use the
examples of Section 2 to discuss the characterizing features of relaxation and
tightening that could be parts of such a framework.

The approach is given schematically in Figure 2. We assume that a modeling
language has a transformation c2a that generates the abstract syntax for a model
expressed using its concrete syntax. Modeling agility is supported by allowing
the modeler to relax the concrete syntax to a new syntax as needed to provide
the required expressive power. Then, when the model must be used for MDE
operations, the tightening transformation T that transforms the model back to
the more strict concrete syntax is constructed. The composition c2a ◦ T takes
the relaxed model to the original abstract syntax, making it amenable to MDE
operations such as transformation and analysis.

The approach is motivated by the observation that human and program
(MDE) users of models have different foci: humans deal with concrete syntax
while MDE primarily deals with the abstract syntax of a model1. Thus, all of
our examples are in concrete syntax. Correspondingly, our transformation-based
approach to relaxation and tightening is centered around concrete syntax. One
of the contributions of the present work is to bring attention to the fact that
extending MDE to address human issues such as agility requires transformations
on the concrete syntax.

The motivation in Section 1 for limiting our scope to omission and clarity
agility was to ensure that a tightening transformation T always exists (though it
might not be necessarily unique). Relaxation to omit information can be tight-
ened by adding back information; while relaxation to express information dif-

1 Model editors and model layout algorithms are notable exceptions to this.

22

Vehicle ControlledBy

Vehicle ControlledBy

Car

Plane

Operator

Driver

Pilot

Vehicle

Car

Plane

void park(location) void park(location)

Vehicle

Car

A) B)

C) D)

E)

Vehicle

Car

Plane

Operator

Driver

Pilot

Fig. 1. Examples of language relaxation.

ferently for clarity is tightened by defining the alternate expression in terms of
native constructs in the original language.

3.1 Implementing relaxation and tightening

We now consider the ways in which elements of Figure 2 are affected by the relax-
ation and tightening process. The concrete syntax can be affected in two ways:
extending the vocabulary (Examples C and E) or weakening the well-formedness
constraints (Examples A, C and D). When the vocabulary is extended, the in-
terpretation transformation c2a must be correspondingly broadened; but the
broadening of c2a may still be required even if the concrete syntax is unaffected
– this is the case with Example B.

The language aspects involved in relaxation have the corresponding tight-
ening actions. Relaxing by extending the vocabulary requires tightening by re-

23

𝑐2𝑎

𝑇
relax

tighten

𝑐2𝑎 ∘ 𝑇

abstract
syntax

concrete
syntax

relaxed
concrete syntax

Fig. 2. Transformation-based approach to address model agility.

defining these extensions in terms of existing constructs. Relaxing by weakening
constraints requires tightening by repairing the violations of the constraints that
were weakened. In Section 4, we discuss these actions in more detail.

Support for agility. The examples in Figure 1 show how our approach applies
to both clarity and omission agility. Clarity agility uses vocabulary extension in
Example C and constraint weakening in Example D. In addition, Example B
illustrates clarity agility when no language changes are made and only c2a is
broadened.

Omission agility uses vocabulary extension in Examples C and E and con-
straint weakening in Example A. Furthermore, three different ways of omitting
information are illustrated: dropping information (Example A), providing alter-
natives (Example C) and using abstraction (Example E).

Whenever omission agility is being addressed, choice may occur in the tight-
ening process, and there are different ways to address this choice. One alternative
is to elicit a decision from the modeler. Another possibility is to make a “sys-
tematic” decision (e.g., always create a new class in Example A). Yet another
is to defer the decision and keep all choices. We discuss this last possibility in
Section 3.2.

Special characteristics of concrete syntax. The physical nature of concrete
syntax makes it different from abstract syntax and this has two important im-
plications for the framework. First, existing spatial relations that are “unused”
can be appropriated for increasing expressiveness without changing the concrete
syntax. This is the case with Example B where vertical alignment is given a
meaning, and in Example D where closeness is given a meaning. Other relations
that can be used are overlap, containment, horizontal alignment, clustering, ra-
dial alignment, etc. Second, some well-formedness constraints are enforced by the
physical world, and so weakening them requires an alternative representation.
This is what motivates the vocabulary extension in Example C.

3.2 Partial modeling

When tightening due to information omission yields a choice of alternatives, the
modeler may not be comfortable having to choose, either because she doesn’t yet

24

A’)

Vehicle

Car

Plane

void park(location)

Vehicle ControlledBy (V) C

(M)

(M)

C’)

Fig. 3. Using partial modeling to express choice in Examples A and C from Figure 1.

know which choice is correct or because she wants to consider all alternatives.
In this case, the technique of partial modeling allows the modeler to defer the
decision and provides an alternative to tightening.

A partial model can express a set of possible models through the use of model
annotations and is typically used to express model uncertainty. For example,
Figure 3 shows the use of the MAVO partial modeling approach to express the
choices due to the omission of information in Examples A and C of Figure 1,
resulting in A’ and C’, respectively. The V annotation in Example A’ means that
the class C is a “variable” and so this represents a set of different models ac-
cording to how the variable is instantiated. The M annotations indicate “maybe”
so Example C’ represents the set of models in which only one of the operation
ownership relations exists. Due to lack of space, we omit a detailed description
of MAVO partial modeling – interested readers are directed to [9]. The benefit
of using partial models is that the annotations have formal semantics and thus
partial models can be used in place of ordinary models in MDE operations such
as property checking [9,2] and transformation [3].

4 Towards tool support

Our strategy relies on tool support. In this section, we discuss some of the
possibilities for this in terms of existing technologies.

Relaxation. The relaxation tool may be a general drawing tool (e.g., Visio)
with a predefined template for the concrete syntax to allow models expressed
in the original language to be drawn. The relaxation mechanism of vocabulary
extension is achieved by allowing other shapes to be drawn as well. The relaxation
mechanism of constraint weakening is achieved by supporting an operating mode
that does not enforce (selectable) constraints. Note that physical constraints
imposed by the concrete syntax cannot be weakened, so these are addressed by
vocabulary extension as in Example C.

Tightening. Constructing the tightening transformation is the more difficult
part of the approach. There are two steps involved in the construction:

25

(1). Identify an occurrence of a language relaxation. Instances of vocabulary
extension or constraint weakening (i.e., violation) are easy to detect automat-
ically. Instances of broadening the interpretation may be impossible to detect
without the modeler “pointing it out”. One clue may be to detect occurrences
of spatial relations (e.g., vertical alignment).

(2). Construct the appropriate tightening depending on the type of relax-
ation:

• For weakened constraints, we must fix model inconsistencies relative to the
original constraints. To do this, we can rely on existing computational approaches
for computing minimal model repairs. The objective here is to search the space
of possible changes to the model to find the minimal changes that fix a constraint
violation. See Section 5 for a discussion of this work in the literature. If there is
still a choice left after the repair process (i.e., there are several possible minimal
repairs), then a strategy for dealing with choice must be followed, e.g., to elicit
the decision from the modeler, follow a predefined choice policy or use a partial
modeling mechanism as described in Section 3.2.

• For vocabulary extensions and other interpretation broadening, a definition
of the new elements/information in terms of constructs in the original language
must be elicited from the modeler. Clearly, this requires the use of a transforma-
tion language for expressing this redefinition, and we rely on existing solutions
for this, e.g., ATL 2.

5 Related Work

The use of relaxation to increase agility has been proposed in various contexts.
There is a long tradition of work on relaxing the input method by allowing
freehand sketching of models. See [7] for a recent example and [5] for a survey.
Support for conversion of sketches to the “computer” form of the concrete syntax
has been developed in commercial tools and explored in research (e.g., [1]). In
contrast to this work, our focus is on agility through the relaxation of the concrete
syntax rather than the input method.

In [6], the authors propose a way of automatically constructing a transfor-
mation language from the concrete syntax of a modeling language. For example,
this allows a modeler to express rules to transform a class diagram in terms of
the concrete class diagram syntax. Since transformation rules must work with
non-well-formed model fragments, the creation of the transformation language
requires a relaxation of the original language. Both the extension of the language
vocabulary and weakening of the well-formedness constraints are used to achieve
this. Further, since transformation languages have a different use than the orig-
inal language they are based on, language modifications are required as well. In
our work, we do not require modifications because the relaxed language has the
same use as the original one.

As discussed in Section 3, the issue of “model tightening” is dependent on
mechanisms for model repair. Due to lack of space, we omit a thorough review of

2 http://www.eclipse.org/atl/

26

work in this area and instead only mention recent examples. Many approaches fo-
cus on attempting to formulate repair rules representing various change scenarios
where specific repair actions are performed in response to detected changes, e.g.,
[10]. Others automatically infer the needed repairs directly the well-formedness
constraints and the violation, e.g., [8]. Many of these approaches also handle the
elicitation of a decision from the user when a choice of multiple repairs is avail-
able. Our tightening transformations can work with either of these techniques.

6 Conclusion

Models are used by humans and programs in different ways, giving rise to what
we have called the agility conflict : humans require expressive freedom while pro-
grams require strict conformance to constraints. In this paper, we outlined the
beginnings of a framework to address the agility conflict with a focus on two
types of agility: omission agility which gives the modeler the freedom to omit
information, and clarity agility which allows the modeler the ability to rephrase
information to improve clarity. Our approach involves relaxing the modeling
language to support these types of agility and then constructing a tightening
transformation to put the relaxed model back into a form that can be accepted
by MDE processes. We explored the approach through a series of examples,
discussing its characteristics and potential tool support. Our next steps are to
further develop the theoretical details of this approach and prototype tool sup-
port for it.

References

1. Th. Buchmann. Towards Tool Support for Agile Modeling: Sketching Equals Mod-
eling. In Proc. of XM’12 Wksp, pages 9–14, 2012.

2. M. Famelis, M. Chechik, and R. Salay. Partial Models: Towards Modeling and
Reasoning with Uncertainty. In Proc. of ICSE’12, 2012.

3. M. Famelis, R.Salay, A. Di Sandro, and M. Chechik. Transformation of Models
Containing Uncertainty. In Proc. of MODELS’13, 2013.

4. H. P. Grice. Logic And Conversation. In Cole et al., editor, Syntax and Semantics
3: Speech arts, pages 41–58. Elsevier, 1975.

5. G. Johnson, M. Gross, J. Hong, and E. Yi-Luen Do. Computational Support for
Sketching in Design: a Review. J. Foundations and Trends in HCI, 2(1):1–93, 2009.

6. Th. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wimmer. Explicit Trans-
formation Modeling. In Proc. of MODELS’10, pages 240–255, 2010.

7. N. Mangano, A. Baker, M. Dempsey, E. Navarro, and A. van der Hoek. Software
Design Sketching with CALICO. In Proc. of ASE’10, pages 23–32, 2010.

8. A. Reder and A. Egyed. Computing Repair Trees for Resolving Inconsistencies in
Design Models. In Proc. of ASE’12, pages 220–229, 2012.

9. R. Salay, M. Famelis, and M. Chechik. “Language Independent Refinement using
Partial Modeling”. In Proc. of FASE’12, 2012.

10. Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei. Supporting Automatic
Model Inconsistency Fixing. In Proc. of ESEC/FSE’09, pages 315–324, 2009.

27

Pending Evolution of Grammars

Vadim Zaytsev

Software Analysis & Transformation Team,
Centrum Wiskunde & Informatica,

Amsterdam, The Netherlands

Abstract. The classic approach to grammar manipulation is based on
instant processing of grammar edits, which limits the kinds of grammar
evolution scenarios that can be expressed with it. Treating transforma-
tion preconditions as guards poses limitations on concurrent changes of
the same grammar, on reuse of evolution scripts, on expressing option-
ally executed steps, on batch processing and optimization of them, etc.
We propose an alternative paradigm of evolution, where a transforma-
tion can be scheduled for later execution based on its precondition. This
kind of extreme evolution can be useful for expressing scenarios that are
impossible to fully automate within the classic or the negotiated trans-
formation paradigms.

1 Introduction

A colloquial expression ‘consider it done’ means that the subject of the conver-
sation is either indeed already done, or will be done in the very near future —
in either case, the receiver of such a message can rest assured that the subject
will take place if it has not already, and is expected to act as if it has indeed
happened. The technique of pending evolution that we introduce in this paper,
is similar to that expression, and the benefits of it are not unlike the subtle
differences between considering something done and it having been done.

As it turns out, the pending evolution scheme allows us to efficiently model
scenarios of grammar evolution, deployment and maintenance that are impossi-
ble to model within the traditional grammar transformation paradigm, which is
briefly explained in §2. The method is introduced in §3. Since the most profits
hide deep in the details, we spend the rest of the paper (§4) by motivating the
use of pending evolution for grammars instead of classical evolution scripts, by
concrete examples. §5 concludes the paper by summarizing its contributions and
discussing related work.

2 GrammarLab

GrammarLab is a codename for a grammar manipulation project that is cur-
rently being migrated from the Software Language Processing Suite1 initiative

1 V. Zaytsev, R. Lämmel, T. van der Storm, L. Renggli, G. Wachsmuth. Software
Language Processing Suite, 2008–2013. http://slps.github.io.

28

to its own repository2. It is centered around the concept of a grammar in a
broad sense [5], which can be extracted by abstracting away the idiosyncratic
details that we see on class diagrams, in algebraic data type definitions, ob-
ject grammars, concrete syntax specifications, database schemata and exposed
library interfaces — all these are ‘grammars in a broad sense’, since they model
commitment to grammatical structure.

Beside extraction, GrammarLab is good in dealing with programmable gram-
mar transformations — a disciplined method of grammar evolution, where every
change is expressed as a call to a transformation operator with a well-defined
semantics; as well as grammar mutations — large scale strategies for changing
one simple thing in a priori unknown number of places. GrammarLab also in-
cludes library for grammar analysis and metrics, but they are less relevant for
this paper.

3 Pending evolution

In GrammarLab, the evolution of a grammar is specified by a sequence of steps,
each referring to a transformation operator or a mutation, with proper param-
eterization: e.g., first we rename a nonterminal, then we factor its definition
and then extract a part of it into a new nonterminal. Each of the possible
transformation operators and mutations in the library, have preconditions that
determine their applicability and postconditions that demonstrate their success-
ful execution. Whenever a postcondition of a step or a precondition of the next
step fails, the transformation sequence is interrupted and an error occurs instead.

When a negotiated transformation paradigm [13] is explored, failure of a pre-
or a postcondition means the start of a negotiation: e.g., if a rename fails, the
engine can propose alternative name pairs that would enable its execution. A
clever strategy for negotiations can drastically increase applicability and reuse
of a transformation script, while still allow for full automation.

The pending evolution paradigm that we propose here, can hold any trans-
formation step pending until its precondition becomes enabled. As will become
apparent from the following examples in §4, it is possible to: (1) push the pending
steps all the way to the end of the evolution sequence and then disregard them;
or (2) leave them forever pending and always ready to be applied any number
of times necessary; or (3) relax the constraints about the order of steps; or (4)
collect and log the information about all the possibly non-sequential failures in a
system; or even intentionally decide that particular steps must be taken by defer
their actual execution until later. Only the simplest local cases can be expressed
in terms of negotiations. On the other hand, only simplest negotiations can be
expressed as pending changes. In short, negotiated transformations enables flex-
ibility with the outcome of one step, while pending evolution enables flexibility
with the order of multiple steps.

2 V. Zaytsev. GrammarLab, 2013. http://grammarware.github.io/lab.

29

4 Scenarios

The paradigm of pending evolution probably has much wider applicability, but
here we sketch at least four user stories for it, inspired by the problems in the
grammarware technological space that can be addressed and solved there.

4.1 Optional execution

In the classic grammar transformation engine of GrammarLab, any grammar
transformation step that changes nothing in the grammar (we call them ‘vacuous
transformations’), is considered erroneous, since in most reasonable contexts
— correction, adaptation, evolution, etc — a change that changes nothing, is
meaningless. However, with some negotiated transformation schemes [13], one
could find it sensible to ignore the fact that a transformation step brought no
actual changes, if considered in a broader context. In particular, consider the
following scenarios:

– Suppose we have a repository of grammars, such as the Grammar Zoo3 [15].
The repository is highly heterogeneous and contains ‘grammars in a broad
sense’ extracted from parser specifications, compiler sources, readable doc-
umentation, privately created webpages, community contributed wikis, gen-
erated and manually built artifacts. However, one of the steps known from
grammar research [8] to increase the quality of a grammar, is resolving all
‘bottom’ nonterminals — the ones that are used within the grammar but
never defined (a grammar with no bottom nonterminals is called a ‘level 3
grammar’ by Lämmel and Verhoef in [8]). While some definitions are simply
missing from the grammar due to development mistakes, quite commonly
these are lexical, or character-level, definitions, containing the rules about
how an identifier name or a numeric literal should look in a language being
defined. A big fraction of these, as becomes apparent after mining Grammar
Zoo, have meaningful names such as ‘string’, ‘identifier’, ‘integer’, ‘id’, etc,
and can be matched to a small library of predefined production rules such as
‘a string is a symmetrically quoted sequence of one or more characters’ or ‘an
integer value is an optional sign followed by one or more digits, the first of
which is not zero’. This can be automated and ran over the whole repository,
which can of such substantial size that prevents its manual verification4 —
however, it would be desirable for the framework to introduce the missing
definitions only if they are truly missing, and allow individual grammars to
retain their specific views of what a string or a boolean looks like. Hence, we
allow the introduce operator5 to be left pending, and disregard it at the
end of the transformation application.

3 Grammar Zoo, http://slps.github.io/zoo
4 Grammar Zoo contains 569 grammars at the day of paper submission.
5 Introduce and other grammar transformation operators are documented at http:

//github.com/grammarware/slps/wiki/introduce and similar URIs.

30

– Consider another scenario. In grammarware technological space, there are
two most common styles of production rules, that we will traditionally call
horizontal and vertical. A horizontal definition says that the nonterminal N is
‘either X or Y or Z’, while the vertical one makes three statements that ‘N is
X’, as well as ‘N is Y’, as well as ‘N is Z’. These can be formally proven to be
equivalent. There are many exceptions, but most language documents prefer
horizontal definitions (e.g., Java Language Specification [3]), while language
workbenches tend toward vertical ones (e.g., The Meta-Environment [4]) or
make no distinction between them (e.g., Rascal [6]). Some transformation
operators also expect their arguments to be either horizontal or vertical,
which leads to the evolution scenarios specified in such a way where some
of the operator calls are preceded by the calls of horizontal or vertical
operators, while others are not. Obviously, this excessive versatility hinders
maintainability and changeability of the transformations. It would be better
to write these transformation steps as assertions. For instance, we can specify
that the definition must by vertical before we deyaccify it, and this step
would be optional, requiring no action if the original definition is already
vertical.

4.2 Error handling

In GrammarLab, transformations are stopped whenever an error occurs, and an
error message is displayed. Within the negotiated paradigm [13], it is possible to
negotiate for another outcome. One of the rather complex strategies for achieving
that, is the one that skips over the failing transformation step and proceeds with
the rest of the script, and then displays all the error messages at the end of
the computation. To demonstrate the usefulness of this approach, consider the
following detailed scenarios.

– In the context of grammar recovery, suppose that we want to extract several
grammars in bulk — they are written in the same style, in the same metalan-
guage, with some a priori unknown differences between them (perhaps they
are different versions or dialects of the same language). After carefully con-
sidering one of them, a grammar engineer develops a post-extraction trans-
formation script that makes the grammar maximally connected, adds missing
definitions, fixes misspelt nonterminal names and corrects other problems.
Naturally, we want to reuse the same transformation script for recovering
the rest of these grammars. However, in the traditional setup, most of the
automated reuse cases will fail because some of the extracted grammars will
have some misspellings already fixed, others will lack the part that concerns
the fixes, etc. Advanced error handling (or ignoring) can help greatly with
scalability in this case, by skipping over inapplicable fixes, applicability clas-
sification, etc.

– Imagine another scenario concerning maintenance of grammar transforma-
tion scripts. Suppose that we have several grammars that are being converged

31

together in multiple steps — e.g., the case study converging six Java gram-
mars found in different editions of the Java Language Specification book,
consisted of 1611 transformation steps arranged in 70 different scripts [10].
When an error is spotted in one of the existing steps, or when another step
needs to be added in the middle of the transformation chain, or when the
order of existing steps needs to be adjusted, it becomes a very labor-intensive
task since every failure stops the transformation computation — having the
luxury of recovering after a failure noticeably increases debugging capabili-
ties.

4.3 Pending fixes

Both the traditional programmed and the negotiated transformation models
delegate the decision about the transformation order to the original script: any
transformation step takes place after the one that precedes it in the specification
and is followed by the one after it. However, there are situations when we can
develop certain transformation scenarios and leave them pending so that they
can be executed when (if) the times comes and they become applicable. In
general this is useful in case of preserving any kind of normal form properties,
but we provide two detailed cases taken from practice:

– Recall the difference between horizontal and vertical definitions that we have
explained in the previous section. Suppose that our grammar uses vertical
definitions exclusively — this is easy to achieve by grammar transformations
or mutations, and easy to validate with a metaprogramming formula or by
micropatterns. However, if we would like to specify that the dominance of
vertical definitions is not incidental and that we would like to preserve it, it
is not possible to express this constraint within the straightforward grammar
programming approach. With pending evolution, we could leave the vertical-
izing mutation pending. Then, if someone introduces a new nonterminal to
the grammar, and that nonterminal is found to be horizontal, the mutation
becomes enabled, is executed and recharged for next use.

– Grammar recovery is a process of extracting a grammar from an existing
software artifact that may not be of perfect quality. Automated grammar
recovery methodology [14] is based on a collection of heuristics that are
partly configurable and partly inferred from the notation specification. One
of such heuristics is splitting composite terminals: for instance, if a termi-
nal like ‘);’ is found, it can be broken into two consecutive terminals: ‘)’
and ‘;’ — simply because the resulting atomic terminals are more helpful
for other heuristics (like matching parentheses). A grammar mutation that
breaks up composite terminals, can be programmed and left pending, such
that under any circumstances that would bring such terminals to the gram-
mar (such as importing another grammar, introducing a new nonterminal
definition, folding/unfolding, projecting symbols, etc), it becomes enabled
and is immediately fired to split such terminals as desired.

32

These scenarios are sufficiently different from the ones in the previous sec-
tion not only in motivation, but also in realization, since we speak of pending
mutations (which are large scale transformations) and recharging them after
transformation.

4.4 Intentional pending

Since we have discussed preserving the grammar already being in the normal
form, another scenario deserves mentioning where the grammar is normalized —
or rather, when such a normalizing mutation is left pending. Below there are two
use cases for this situation, but any normalization could possibly spawn another
one.

– Suppose that we have a grammar written in a specific notation (usually a
dialect of EBNF). Suppose also that a notation evolves, and the grammar is
required to coevolve in order to preserve conformance to the metalanguage.
This scenario is called ‘metalinguistic evolution’ [12] and has been studied
sufficiently to be applied in an automated fashion. One of such applications
involves a grammar being exported to a particular notation, which it might
not perfectly fit. For instance, the grammar may use an explicit repetition
(usually denoted with ‘*’) or other metaconstructs which are lacking from
the notation. Another typical case is that the target metalanguage insists on
a particular naming convention for the nonterminal (e.g., all must be written
in capitals). In that case, the grammar needs to coevolve with the ‘change’ of
notation from its original one to the one that it is being exported to. However,
this coevolution is essentially a part of the exporting process, and as such
must always take place after all the other evolution steps. Hence, it can be left
pending until the very end of the transformation script, and be executed last,
removing the use of excessive metalanguage elements, changing the naming
convention and adjusting grammar before the actual export mapping.

– Grammars in a broad sense can be observed in very different environments
and extracted from artifacts hailing from different technological spaces: XML
schemata, Ecore models, class diagrams, parser specifications, data types,
etc. Even when these define one intended language, they are different in
many ways. A technique called grammar convergence [9] is used to reverse
engineer the real relationships between such grammars: based on expert-
written transformation scripts, it can show which grammars define the same
language, which define languages that are subsets or supersets of one another,
and which are incomparable. It is also possible to automate the creation
of such scripts, but the inference algorithm performs best when grammars
are in so called ‘abstract normal form’. Many constraints of the abstract
normal form contradict the practice of grammar engineering, so it would be
most desirable to continue working with the non-normalized grammar and
then perform the pending normalization right before the guided grammar
convergence algorithm is applied. Then, the obtained result can be traced
back to the original grammar by reversing the bidirectional transformation
chain produced by the normalizer.

33

5 Concluding remarks

There are some techniques similar to pending evolution in the inconsistency
management, most notably with concurrent transformation schemes. Such in-
consistencies can be represented as separate first-class entities [2] and incor-
porated directly to the resulting model [7], which enables efficient handling of
inconsistency detection and resolutions as graph transformation rules [11] in
a much less extreme way than the one proposed in this paper. The fact that
these approaches of inconsistency modeling and resolution are not entirely cov-
ered by negotiated grammar transformation, has inspired us to look for common
schemes of advanced change impact propagation, importing ideas from model-
ware to grammarware and adapting them to the domain.

To summarize, we have proposed the following use cases for the technique of
pending grammar evolution:

– optional execution (§4.1)
• optionally complementing the grammar with missing definitions
• using optional transformations as assertions

– error handling (§4.2)
• reusing transformations for bulk extraction
• debugging transformations

– pending fixes (§4.3)
• persistent commitment to a normal form
• pending recovery heuristics

– intentional pending (§4.4)
• pre-export processing
• pre-convergence normalization

Pending evolution for grammars (either in a broad sense [5] or in the clas-
sic sense [1]) has never been considered before. Investigating the impact and
opportunities for pending evolution schemes in other fields like program trans-
formation remains future work. In transaction handling domains both of great
strictness (such as database management and mainframe job processing) and
persistent inconsistency (such as managing wiki contents with a bot) one will be
able to find techniques somewhat similar to the one we have proposed here.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1985.

2. A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A Metamodel Independent Ap-
proach to Difference Representation. Journal of Object Technology, 6(9):165–185,
Oct. 2007. TOOLS EUROPE 2007 — Objects, Models, Components, Patterns.

3. J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The Java Language Specification.
Addison-Wesley, third edition, 2005.

4. J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The Syntax Definition
Formalism SDF—Reference Manual. ACM SIGPLAN Notices, 24(11):43–75, 1989.

34

5. P. Klint, R. Lämmel, and C. Verhoef. Toward an Engineering Discipline for Gram-
marware. ACM Transactions on Software Engineering Methodology (TOSEM),
14(3):331–380, 2005.

6. P. Klint, T. van der Storm, and J. Vinju. EASY Meta-programming with Rascal.
In J. M. Fernandes, R. Lämmel, J. Visser, and J. Saraiva, editors, Post-proceedings
of the Third International Summer School on Generative and Transformational
Techniques in Software Engineering (GTTSE 2009), volume 6491 of LNCS, pages
222–289, Berlin, Heidelberg, Jan. 2011. Springer-Verlag.

7. M. Kögel, H. Naughton, J. Helming, and M. Herrmannsdörfer. Collaborative Model
Merging. In Companion of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, SPLASH ’10, pages 27–34, New
York, NY, USA, 2010. ACM.

8. R. Lämmel and C. Verhoef. Semi-automatic Grammar Recovery. Software—
Practice & Experience, 31(15):1395–1438, Dec. 2001.

9. R. Lämmel and V. Zaytsev. An Introduction to Grammar Convergence. In
M. Leuschel and H. Wehrheim, editors, Proceedings of the Seventh International
Conference on Integrated Formal Methods (iFM 2009), volume 5423 of LNCS, pages
246–260, Berlin, Heidelberg, Feb. 2009. Springer-Verlag.

10. R. Lämmel and V. Zaytsev. Recovering Grammar Relationships for the Java Lan-
guage Specification. Software Quality Journal (SQJ), 19(2):333–378, Mar. 2011.

11. T. Mens, R. Van Der Straeten, and M. D’Hondt. Detecting and Resolving Model
Inconsistencies Using Transformation Dependency Analysis. In O. Nierstrasz,
J. Whittle, D. Harel, and G. Reggio, editors, Model Driven Engineering Languages
and Systems (MoDELS’06), volume 4199 of LNCS, pages 200–214. Springer, 2006.

12. V. Zaytsev. Language Evolution, Metasyntactically. Electronic Communications
of the European Association of Software Science and Technology (EC-EASST), 49,
2012.

13. V. Zaytsev. Negotiated Grammar Transformation. In J. De Lara, D. Di Ruscio, and
A. Pierantonio, editors, Post-proceedings of the Extreme Modeling Workshop (XM
2012). ACM Digital Library, Nov. 2012. In print, currently available at http://

www.di.univaq.it/diruscio/sites/XM2012/xm2012_submission_11.pdf. An ex-
tended version is currently under major revision to the Special issue on Extreme
Modeling of The Journal of Object Technology (JOT).

14. V. Zaytsev. Notation-Parametric Grammar Recovery. In A. Sloane and S. An-
dova, editors, Post-proceedings of the 12th International Workshop on Language
Descriptions, Tools, and Applications (LDTA 2012). ACM Digital Library, June
2012.

15. V. Zaytsev. Grammar Zoo: A Repository of Experimental Grammarware. Under
major revision for the Fifth Special issue on Experimental Software and Toolkits
of Science of Computer Programming (SCP EST5), 2013.

35

Language Support for Megamodel Renarration

Ralf Lämmel1 and Vadim Zaytsev2

1 Software Languages Team, Universität Koblenz-Landau, Germany
2 Software Analysis & Transformation Team, CWI, Amsterdam, The Netherlands

Abstract. Megamodels may be difficult to understand because they re-
side at a high level of abstraction and they are graph-like structures that
do not immediately provide means of order and decomposition as needed
for successive examination and comprehension. To improve megamodel
comprehension, we introduce modeling features for the recreation, in fact,
renarration of megamodels. Our approach relies on certain operators for
extending, instantiating, and otherwise modifying megamodels. We il-
lustrate the approach in the context of megamodeling for Object/XML
mapping (also known as XML data binding).

Keywords: megamodeling, linguistic architecture, renarration, software
language engineering, XML data binding

1 Introduction

Models (of all kinds) may be difficult to understand when they reside at a high
level of abstraction and when they are not structured in a way to serve successive
examination and comprehension. In this paper,3 we are specifically concerned
with the modeling domain of the linguistic architecture of software systems [5]
and a corresponding form of megamodels [3]. These are highly abstract models
about software systems in terms of the involved languages, technologies, con-
cepts, and artifacts. We aim to improve understanding of such models by means
of renarration such that a megamodel is described (in fact, recreated) by a ‘story’
as opposed to a monolithic, highly abstract graph.

Contribution of this paper We enrich the megamodeling language MegaL [5]
with language support for renarration such that megamodels can be developed in
an incremental manner, subject to appropriate operators such as ‘addition’, ‘re-
striction’, or ‘instantiation’, also subject to an appropriate notion of megamodel
deltas. In previous work [16], we have introduced the notion of renarration of
megamodels in an informal manner as the process of converting a collection of
facts into a story, also inspired by natural language engineering [15], computer-
assisted reporting [13] and database journalism [8]. In this paper, we take the
next step: we enrich megamodeling with proper language support for renarration.

3 The paper’s website: http://softlang.uni-koblenz.de/megal-renarration

36

Fig. 1. A megamodel for Object/XML mapping (also known as XML data binding)

Roadmap §2 provides background on megamodeling and motivates the need for
renarration. §3 recalls the MegaL language. §4 describes the specific approach to
renarration. §5 provides a catalogue of operators that are used to express steps
of renarration. §6 validates the approach in the context of megamodeling for
Object/XML mapping. §7 discusses related work. §8 concludes the paper.

2 On the need for megamodel renarration

“A megamodel is a model of which [...] some elements represent and/or refer
to models or metamodels” [3]—we use this definition by interpreting the notion
of (meta)models in a broad sense to include programs, documents, schemas,
grammars, etc. Megamodeling is often applied in the context of model-driven
engineering while we apply it in the broader software engineering and software
development context.

That is, we use megamodels to model the linguistic architecture of software
systems [5]. By linguistic architecture of software systems or technologies, we
mean their architecture expressed in terms of the involved software languages,
software technologies, software concepts, software artifacts, and the explicit re-
lationships between all these conceptual and actual entities. In our recent work,
we have shown the utility of megamodels for understanding the linguistic archi-
tecture of diverse software (language) engineering scenarios [5,16].

Consider Figure 1 for an illustrative megamodel rendered in the visual syntax
MegaL/yEd [5]. The nodes represent entities (languages, schemas, tools, etc.).
The edges represent relationships (‘elementOf’, ‘conformsTo’, ‘correspondsTo’,
etc.). The megamodel sketches basic aspects of Object/XML mapping according
to the JAXB technology for XML data binding in the Java platform. Specifically,
there is the aspect of deriving an object model (i.e., Java classes) from an XML
schema (see the upper data flow in the figure) and the aspect of de-serializing
an XML document to an object graph in the JVM (see the lower data flow in
the figure).

One impediment to megamodel comprehension is the abstraction level of
megamodels. In particular, the role and the origin of the entities as well the
meaning of the relationships may not be evident. In recent work [5], we have

37

proposed a remedy for this problem. Our proposal involves linking megamodel
entities and relationships to proper artifacts or extra resources for conceptual
entities.

This paper focuses on another impediment to megamodel comprehension:
megamodels are essentially just graph-like structures that do not immediately
provide means of order and decomposition as needed for successive examination
and comprehension. Consider the figure again. The following kinds of questions
naturally arise. Where to start ‘reading’ in the figure? Are there any subgraphs
that can be understood independently? Do any of the entities arise as instan-
tiations of more general entities that may be worth mentioning to facilitate
understanding?

The latter impediment to comprehension is not unique to megamodeling,
of course. Various modeling or specification languages are prone to the same
problem. Various remedies exist, e.g., based on modularization, abstraction, re-
finement, annotation, and slicing. In this paper, we put to work renarration
which is indeed inspired by existing ideas on refinement, modularization, and
slicing.

In general, renarration is the process of creating different stories while reusing
the same facts (cf. narration4). In literature, for example, renarration is a tech-
nique to create a story by the narrator based on fixed plot elements; the story
itself can be adapted to the audience and other circumstances—we refer to [2]
for more background information. In megamodeling, renarration is a process of
creating stories for the recreation of a megamodel. Recreation may cater for
the audience’s technical background and interest, time available and yet other
factors. In our experience, the process of recreating a megamodel is needed to
make megamodels meaningful to humans. Recreation may be interactive, e.g.,
by renarrating megamodels on the whiteboard, encouraging questions from the
audience, and responding to these questions in the continuation of the story.
This paper provides language support for the process of renarration.

3 Megamodeling with MegaL

Figure 1 provided a first illustration of the MegaL [5] language for megamodeling.
In the rest of the paper, we use the textual MegaL syntax, i.e., MegaL/TXT. A
megamodel is a collection of declarations of the following kinds.

Entity declarations A name is introduced for a conceptual entity, an actual
entity, or a parameter thereof; an entity type (e.g., Language or File) is assigned.
For instance:

Java : Language // ”Java” as a language entity
JavaGrammar : Artifact // the ”JavaGrammar” as an artifact entity
BNF : Language // ”BNF” as a language entity
?aLanguage : Language // parameter ”aLanguage” for a language entity
?aProgram : File // parameter ”aProgram” for a file entity

4
According to Merriam-Webster: narration: the act or process of telling a story or describing what
happens http://www.merriam-webster.com/dictionary/narration Visited 14 September 2013.

38

We speak of a conceptual entity, if it exits in our mind, as in the case of a
language. We speak of an actual entity (or simply an artifact), if it is manifest
in some way: it exists on the file system (e.g., a language description) or as data
structure at runtime (e.g., a parse tree).

Relationship declarations Two declared entities (or parameters thereof) are
related by a binary relationship (e.g., ‘elementOf’ or ‘conformsTo’). For instance:

aProgram elementOf Java // a program of the Java language
JavaGrammar elementOf BNF // the Java grammar is a BNF−style grammar
JavaGrammar defines Java // the Java grammar defines the Java language
aProgram conformsTo JavaGrammar // a program conforming to the Java grammar

Entity-type declarations There is a number of predefined, fundamental entity
types, as exercised in the earlier examples, but new entity types can be defined
by specialization. For instance:

OopLanguage < Language // an entity type for OO programming languages
FpLanguage < Language // an entity type for functional programming languages

Relationship-type declarations Likewise, there is a number of predefined,
fundamental relationship types, as exercised in the illustrations above, but new
relationship types can be defined on predefined as well as explicitly declared
entity types. We do not further discuss such expressiveness in this paper.

The declarations simply describe a graph as illustrated in Figure 1. The order
of all declarations of a megamodel is semantically irrelevant. The lack of any
intrinsic notion of order (as in an imperative setting) or decomposition (as in
substitution or function composition in functional programming) feeds into the
comprehension challenge to be addressed by renarration. We mention in passing
that megamodels have an interesting evaluation semantics. That is, declared re-
lationships may be checked by applying some programmatic relationship-specific
check on resources linked to declared entities.

4 Megamodel renarration

We add language support for renarration to the megamodeling language MegaL.
We commit to a specific view on renarration such that megamodel deltas are
used in the recreation of a megamodel through a sequence of steps with each
step being effectively characterized by ingredients as follows:

– An informative label of the step, also serving as an ‘id’ for reference.
– The actual delta in terms of added and removed declarations (such as entity

and relationship declarations). Added declarations are prefixed by ‘+’; re-
moved declarations are prefixed by ‘−’. Deltas must preserve well-formedness
of megamodels. In particular:
• Entities are declared uniquely.
• All entities referenced by relationship declarations are declared.
• Relationships are applied to entities of suitable types.

39

Consider the following megamodel (in fact, megamodeling pattern) of a file and a
language being related such that the former (in terms of its content) is an element of
the latter.

[Label=”File with language”, Operator=”Addition”]
+ ?aLanguage : Language // some language
+ ?aFile : File // some file
+ aFile elementOf aLanguage // associate language with file

In a next step, let us instantiate the language parameter to actually commit to the
specific language Java. Thus:

[Label=”A Java file”, Operator=”Instantiation”]
+ Java : Language // pick a specific language
+ aFile elementOf Java // associate the file with Java
- ?aLanguage : Language // removal of language parameter
- aFile elementOf aLanguage // removal of reference to language parameter

Fig. 2. An illustrative renarration

– An operator to describe the intent of the step. Each operator implies specific
constraints on the delta, as discussed below.

The steps are interleaved with informal explanations.

See Figure 2 for a trivial, illustrative renarration. The first step introduces
some entities and relates them. Nothing is removed; thus, the use of the opera-
tor ‘Addition’. The second step instantiates the megamodel to a more concrete
situation. The more general declarations are removed according to the delta and
more specific declarations are added; thus, the use of the operator ‘Instantiation’.
Arguably, the instantiation could be characterized more concisely than by listing
the delta, but we like to emphasize the utility of deltas for at least explaining
the intended semantics of the renarration operators.

5 Renarration operators

The illustrative renarration of Figure 2 has started to reveal some operators:
addition and instantiation. In this section, we provide a catalogue of operators.
In the next section, the operators will be illustrated by a larger renarration.

– Addition: declarations are exclusively added; there are no removals. Use this
operator to enhance a megamodel through added entities and to constrain
a megamodel through added relationships.

– Removal : the opposite of Addition.

– Restriction: net total of addition and removal is such that entities may be
restricted to be of more specific types. Also, the set operand of ‘elementOf’
and the super-set operand of ‘subsetOf’ relationships may be restricted.

– Generalization: the opposite of Restriction.

40

– ZoomIn: net total of addition and removal is such that relationships are
decomposed to reveal more detail. Consider, for example, the relationship
type mapsTo, which is used to expressed that one entity is (was) transformed
into another entity. When zooming in, a relationship x mapsTo y could be
expanded so as to reveal the function that contributes the pair 〈x, y〉.

– ZoomOut : the opposite of ZoomIn.
– Instantiation: parameters are consistently replaced by actual entities. We

may describe such instantiation directly by a mapping from parameters to
entities as opposed to a verbose delta. (A delta is clearly obtainable from
such a mapping.)

– Parameterization: the opposite of Instantiation.
– Connection: convert an entity parameter into a dependent entity, which is

one that is effectively determined by relationships as opposed to being yet
available for actual instantiation. Such a dependency often occurs as the
result of adding other parameters, e.g., a parameter for the definition of a
language. We prefix dependent entity declarations by ‘!’ whereas ‘?’ is used
for parameters, as explained earlier.

– Disconnection: the opposite of Connection.
– Backtracking : return to an earlier megamodel, as specified by a label. This

may be useful in a story, when a certain complication should only be tem-
porarily considered and subsequent steps should relate again to a simpler
intermediate state.

6 An illustrative renarration

We are going to renarrate a megamodel for Object/XML mapping. We begin
with the introduction of the XML schema which is the starting point for gener-
ating a corresponding object model:

[Label=”XML schema”, Operator=”Addition”]
+ XSD : Language // the language of XML schemas
+ ?anXmlSchema : File // an XML schema
+ anXmlSchema elementOf XSD // an XML schema, indeed

On the OO side of things, we assume a Java-based object model:

[Label=”Object model”, Operator=”Addition”]
+ Java : Language // the Java language
+ ?anObjectModel : File+ // an object model organized in one or more files
+ anObjectModel elementOf Java // a Java−based object model

The entities anXmlSchema and anObjectModel are parameters (see the ‘?’ prefix)
in that they would only be fixed once we consider a specific software system. We
assume that schema and object model are related to each other in the sense that
the former is mapped to (‘transformed into’) the latter; these two data models
also correspond to each other [5].

[Label=”Schema first”, Operator=”Addition”]
+ anXmlSchema mapsTo anObjectModel // the schema maps to the object model
+ anXmlSchema correspondsTo anObjectModel // the artifacts are ”equivalent”

41

The ‘mapsTo’ relationship is helpful for initial understanding, but more details
are needed eventually. Let us reveal the fact that a ‘type-level mapping’ would
be needed to derive classes from the schema; we view this as ‘zooming in’: one
relationship is replaced in favor of more detailed declarations:

[Label=”Type−level mapping”, Operator=”ZoomIn”]
+ ?aTypeMapping : XSD -> Java // a mapping from schemas to object models
+ aTypeMapping(anXmlSchema) |-> anObjectModel // apply function
- anXmlSchema mapsTo anObjectModel // remove too vague mapping relationship

It is not very precise, neither is it suggestive to say that type-level mapping
results in arbitrary Java code. Instead, we should express that a specific Java
subset for simple object models (in fact, POJOs for data representation without
behavioral concerns) is targeted. Thus, we restrict the derived object model as
being an element of a suitable subset of Java, to which we refer here as OxJava:

[Label=”O/X subset”, Operator=”Restriction”]
+ OxJava : Language // the O/X−specific subset of Java
+ OxJava subsetOf Java // establishing subset relationship, indeed
+ anObjectModel elementOf OxJava // add less liberal constraint on object model
- anObjectModel elementOf Java // remove too liberal constraint on object model

We have covered the basics of the type level of Object/XML mapping. Let us look
at the instance level which involves XML documents and object graphs (trees)
related through (de-)serialization. Let us assume an XML input document for
de-serialization which conforms to the XML schema previously introduced:

[Label=”XML document”, Operator=”Addition”]
+ XML : Language // the XML language
+ ?anXmlDocument : File // an XML document
+ anXmlDocument elementOf XML // an XML document, indeed
+ anXmlDocument conformsTo anXmlSchema // document conforms to schema

The result of de-serialization is an object graph that is part of the runtime state.
We assume a language for Java’s JVM-based object graphs. The object graph
conforms to the object graph previously introduced:

[Label=”Object graph”, Operator=”Addition”]
+ JvmGraph : Language // the language of JVM graphs
+ ?anObjectGraph : State // an object graph
+ anObjectGraph elementOf JvmGraph // a JVM−based object graph
+ anObjectGraph conformsTo anObjectModel // graph conforms to object model

De-serialization maps the XML document to the object graph:

[Label=”Instance−level mapping”, Operator=”Addition”]
+ ?aDeserializer : XML -> JvmGraph // deserialize XML to JVM graphs
+ aDeserializer(anXmlDocument) |-> anObjectGraph // map via deserializer

At this point, the mappings both at type and the instance levels (i.e., aTypeMap-
ping and aDeserializer) are conceptual entities (in fact, functions) without a
trace of their emergence. We should manifest them in relation to the underlying
mapping technology. We begin with the type level.

[Label=”Code generator”, Operator=”Addition”]

42

+ ?anOxTechnology : Technology // a technology such as JAXB
+ ?anOxGenerator : Technology // the generation part
+ anOxGenerator partOf anOxTechnology // a part, indeed

By relating generator and type mapping, we stop viewing the (conceptual entity
for the) mapping as a proper parameter; rather it becomes a dependent entity.

[Label=”Dependent type−level mapping”, Operator=”Connection”]
+ anOxGenerator defines aTypeMapping // mapping defined by generator
+ !aTypeMapping : XSD -> Java // this is a dependent entity now
- ?aTypeMapping : XSD -> Java // Ditto

Likewise, de-serialization is the conceptual counterpart for code that actually
constructs and runs a de-serializer with the help of a designated library, which
is another part of the mapping technology:

[Label=”O/X library”, Operator=”Addition”]
+ ?anOxLibrary : Technology // the O/X library
+ anOxLibrary partOf anOxTechnology // an O/X part
+ ?aFragment : Fragment // souce code issuing de−serialization
+ aFragment elementOf Java // source code is Java code
+ aFragment refersTo anOxLibrary // use of O/X library

Again, we eliminate the parameter for the de-serializer:

[Label=”Dependent instance−level mapping”, Operator=”Connection”]
+ aFragment defines aDeserializer // fragment ”constructs” de−serializer
+ !aDeserializer : XML -> JvmGraph // this is a dependent entity now
- ?aDeserializer : XML -> JvmGraph // Ditto

Let us instantiate the mapping technology and its components to commit to the
de-facto platform standard: JAXB [9]. We aim at the following replacements of
parameters by concrete technology names:

[Label=”JAXB”, Operator=”Instantiation”]
anOxTechnology => JAXB // instantiate parameter ... as ...
anOxGenerator => JAXB.xjc // ditto
anOxLibrary => JAXB.javax.xml.bind // ditto

Thus, we use qualified names for the component technologies of JAXB, thereby
reducing the stress on the global namespace. We omit the the lower level meaning
of the instantiation in terms of a delta.

Let us now generalize rather than instantiate. To this end, we first backtrack
to an earlier state—the one before we instantiated for JAXB:

[Label=”Dependent instance−level mapping”, Operator=”Backtracking”]

Now we can generalize further by making the language a parameter of the model.
(Again, we show the concise mapping of actual entities to parameters as opposed
to the delta for all the affected declarations.)

[Label=”Beyond Java”, Operator=”Parameterization”]
Java => anOopLanguage // replace ... by parameter ...
OxJava => anOxLanguage // ditto

Arguably, we should use more specific entity types to better characterize some
of the parameters of the model. For instance, the intention of the language

43

parameter to be an OOP language is only hinted at with the parameter’s name;
we could also designate and reference a suitable entity type:

[Label=”Taxonomy”, Operator=”Restriction”]
+ OopLanguage < Language // declare entity type for OOP languages
+ ?anOopLanguage : OopLanguage // limit entity type of language
+ ?anOxLanguage : OopLanguage // limit entity type of language
- ?anOopLanguage : Language // remove underspecified declaration
- ?anOxLanguage : Language // remove underspecified declaration

7 Related work

In the presentation of actual megamodels, e.g., in [5,6,7,12,14], arguably, ele-
ments of renarration appear, due to the authors’ natural efforts to modularize
their models, to relate them, and to develop and describe them in piecemeal
fashion. Renarration as an explicit presentation technique in software engineer-
ing was introduced in previous work [16]. Renarration as an explicit modeling
technique is the contribution of the present paper.

It may seem that the required language support is straightforward, if not
trivial. For instance, one may compare delta-based megamodel recreation with
language support for model construction (creation), e.g., in the context of exe-
cutable UML, as supported by action languages [11]. However, the renarration
operators are associated with diverse constraints, as hinted at in their descrip-
tion, which brings them closer to notions such as refactoring or refinement or,
more generally, model evolution. Deltas are used widely in model evolution;
see, for example, [4]. In this context, it is also common to associate low-level
deltas, as observed form the change history, with high-level intents in the sense
of model-evolution operators.

A more advanced approach to the renarration of megamodels may receive
inspiration from, for example, model management in MDE with its management
operators (e.g., for composition [1]) and grammar convergence [10] with its rich
underlying operator suite of (in this case) grammar modifications.

The field of natural language engineering contains many problems such as de-
riving a syuzhet from a fabula, a plot from genre elements, or a story from a plot.
Recent solutions to these problems are advanced, formal and automated [15], and
can be reused for software language engineering to facilitate semi-automatic or
genetic inference of megamodel renarrations based on given constraints.

8 Concluding remarks

We have introduced language support for renarrating megamodels. With a rel-
atively simple language design, we have made it possible to recreate (renarrate)
megamodels in an incremental manner, while expressing intents by means of
designated operators along the way.

In future work, we plan to provide a precise semantics of the operators. Fur-
ther, by applying renarration to a number of different megamodeling scenarios,
we also hope to converge on the set of operators needed in practice. Deltas,

44

as such, are fully expressive to represent any sort of recreation, but the suite of
operators needs to be carefully maintained to support enough intentions for con-
venient use and useful checks on the steps. Yet another interesting area of future
work is the animation of renarrations for a visual megamodeling language; we use
the visual approach already informally on the whiteboard. Finally, the improve-
ment of megamodel comprehension through renarration should be empirically
validated.

References

1. A. Anwar, T. Dkaki, S. Ebersold, B. Coulette, and M. Nassar. A Formal Approach
to Model Composition Applied to VUML. In Proc. of ICECCS 2011, pages 188–
197. IEEE, 2011.

2. M. Baker and A. Chesterman. Ethics of Renarration. Cultus, 1(1):10–33, 2008.
Mona Baker is interviewed by Andrew Chesterman.

3. J. Bézivin, F. Jouault, and P. Valduriez. On the Need for Megamodels. OOPSLA
& GPCE, Workshop on best MDSD practices, 2004.

4. A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A Metamodel Independent Ap-
proach to Difference Representation. Journal of Object Technology, 6(9):165–185,
2007.

5. J.-M. Favre, R. Lämmel, and A. Varanovich. Modeling the Linguistic Architecture
of Software Products. In Proc. of MODELS 2012, volume 7590 of LNCS, pages
151–167. Springer, 2012.

6. J.-M. Favre and T. NGuyen. Towards a Megamodel to Model Software Evolution
through Transformations. ENTCS, 127(3), 2004.

7. R. Hilliard, I. Malavolta, H. Muccini, and P. Pelliccione. Realizing Architecture
Frameworks Through Megamodelling Techniques. In Proc. of ASE 2010, pages
305–308. ACM, 2010.

8. A. Holovaty. A Fundamental Way Newspaper Sites Need to Change, Sept. 2006.
http://www.holovaty.com/writing/fundamental-change/.

9. JCP JSR 31. JAXB 2.0/2.1 — Java Architecture for XML Binding, 2008. http:

//jaxb.dev.java.net/.
10. R. Lämmel and V. Zaytsev. An Introduction to Grammar Convergence. In Proc.

of IFM 2009, volume 5423 of LNCS, pages 246–260. Springer, 2009.
11. C.-L. Lazar, I. Lazar, B. Pârv, S. Motogna, and I. G. Czibula. Using a fUML

Action Language to Construct UML Models. In Proc. of SYNASC 2009, pages
93–101. IEEE Computer Society, 2009.

12. B. Meyers and H. Vangheluwe. A Framework for Evolution of Modelling Languages.
Science of Computer Programming, 76(12):1223–1246, 2011.

13. L. C. Miller. Power Journalism: Computer-Assisted Reporting. Harcourt Brace
College Publishers, 1997.

14. J.-S. Sottet, G. Calvary, J.-M. Favre, and J. Coutaz. Megamodeling and
Metamodel-Driven Engineering for Plastic User Interfaces: MEGA-UI. In Human-
Centered Software Engineering, pages 173–200. Springer, 2009.

15. K. Wang, V. Q. Bui, and H. A. Abbass. Evolving Stories: Tree Adjoining Grammar
Guided Genetic Programming for Complex Plot Generation. In Proc. of SEAL
2010, pages 135–145. Springer, 2010.

16. V. Zaytsev. Renarrating Linguistic Architecture: A Case Study. In Proc. of MPM
2012, pages 61–66. ACM, 2012. http://dx.doi.org/10.1145/2508443.2508454.

45

An Approach for Efficient Querying of Large
Relational Datasets with OCL-based Languages

Dimitrios S. Kolovos, Ran Wei, and Konstantinos Barmpis

Department of Computer Science, University of York,
Deramore Lane, York, YO10 5GH, UK

{dimitris.kolovos, rw542, kb634}@york.ac.uk

Abstract. Relational database management systems are used to store
and manage large sets of data, subsets of which can be of interest in the
context of Model Driven Engineering processes. To enable seamless inte-
gration of information stored in relational databases in an MDE process,
the technical and conceptual gap between the two technical spaces needs
to be bridged. In this paper we investigate the challenges involved in
querying large relational datasets using an imperative OCL-based trans-
formation language (EOL) through a running example, and we propose
solutions for some of these challenges.

1 Introduction

Information that can potentially be of interest in the context of a Model Driven
Engineering process is often located within non-model artefacts such as spread-
sheets, XML documents and relational databases. As such, model management
languages and tools would arguably benefit from extending their scope beyond
the narrow boundaries of 3-level metamodelling architectures such as EMF and
MOF for MDE.

In previous work, we have demonstrated how OCL-based model manage-
ment (e.g. model validation, model-to-text and model-to-model transformation)
languages of the Epsilon platform [1] can be used to interact with plain XML
documents [2] and spreadsheets [3]. In this work we investigate the challenges
involved in using such languages to query large relational datasets and extract
abstract models that can be then used (e.g. analysed, validated, transformed) in
the context of MDE processes. In particular, we identify the challenges imposed
by the size of such datasets and the conceptual gap between the organisation
of relational databases and the object-oriented syntax of OCL-based languages,
and we propose some solutions.

The rest of the paper is organised as follows. In Section 2 we present a run-
ning example that involves querying a real-world large relational dataset and
extracting an EMF model from it using an OCL-based imperative transforma-
tion language, we identify the performance challenges involved in doing so, and
propose a run-time query translation approach that addresses some of these chal-
lenges. In Section 3, we review previous work on using OCL to query relational
datasets and compare our approach to it, and in Section 4 we conclude the paper
and provide directions for further work.

46

2 Querying Large Relational Datasets: Challenges and
Solutions

The Epsilon Object Language [4] is an OCL-based imperative model query and
transformation language. EOL is the core language of the Epsilon platform and
underpins a number of task-specific languages for model management tasks in-
cluding model validation, model-to-model and model-to-text transformation. As
such, by adding support for querying relational datasets to EOL, this capability
is automatically propagated to all task-specific languages of the platform. While
the discussion in the rest of the paper focuses on EOL, in principle the discussion
and solutions proposed are also relevant to a wide range of OCL-based model
management languages such as QVTo, ATL and Kermeta.

To experiment with querying relational datasets with EOL, we selected a
large real-world publicly-available dataset from the US Bureau of Transportation
Statistics1 that records all domestic flights in the US in January 2013. The
dataset consists of one table (Flight) with 223 columns and 506,312 rows and is
221MB when persisted in MySQL. Each row of the table records the details of
a domestic flight during that month, including the short codes of its origin and
destination airports, the flight’s departure and arrival time etc. An excerpt of
the Flight table appears in Figure 1.

Our aim in this running example is to transform this dataset into an EMF
model that conforms to the metamodel of Figure 2 and which captures the
incoming and outgoing routes for each airport as well as the volume of traffic
on these routes, so that we can then further process the EMF model to discover
interesting facts about the structure of the US airport network.

...

...

...

...

...

...

......

0915

depTime

AZA

ATL
arrTime

ABE
origin

ADQANC
12520735

1556

ABQ

dest

DEN
0804

1557 1812
BWI

1731

Fig. 1. Excerpt of the Flight table Fig. 2. Simple ATM System Metamodel

1 http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=
236&DB_Short_Name=On-Time

47

2.1 Finding the number of airports in the network

A reasonable OCL-like expression2 that can be used to retrieve the number of
all distinct airports3 in the Flight table would be:
Flight.allInstances.origin.asSet().size()

When such an expression is evaluated against an in-memory model (e.g. an
EMF model) the EOL execution engine performs the following steps:

1. It inspects the model and computes a collection of all model elements of type
Flight;

2. It iterates through the contents of the collection computed in step 1 and
collects the values of their origin properties in a new collection;

3. It removes all duplicates from the collection computed in step 2;
4. It computes the size of the collection computed in step 3.

To evaluate the same expression against the relational database discussed
above, we can assume that each table in the database is a type and each row
in the table is a model element that is an instance of that type. Under these
assumptions, the following issues emerge:

1. To compute the Flight.allInstances collection, the engine needs to execute the
following SQL query: select * from Flight. Due to the size of the Flight table,
the returned result-set cannot fit in a reasonable amount of heap space (we
experimented with up to 1GB), and as such it needs to be streamed from
the database to the engine instead. Streamed result-sets demonstrate the
following challenges:
– They support forward-only iteration;
– To calculate the size of a streamed result-set it needs to be exhaustively
iterated (in which case it becomes unusable as only forward iteration is
permitted);
– Each database connection cannot support more than one streamed result-
sets at a time.

2. Iterating through all rows of the Flight table through a streamed result set
and collecting the values of the origin column of each row is particularly
inefficient given that the same result can be achieved at a fraction of the
time using the following SQL statement: select origin from Flight ;

3. Eliminating duplicates by iterating the collection computed in step 2 is also
inefficient as the same result can be achieved using the following – more
efficient – SQL statement: select distinct origin from Flight ;

4. Finally, calculating the size of a streamed result-set is not trivial without
invalidating the result-set itself. By contrast, this could be computed in one
step using the following SQL statement: select count(distinct origin) from
Flight.

2 EOL does away with the ocl- prefixes (e.g. oclAsSet()) and the → OCL operator
and uses . instead for all property/method calls.

3 We assume that there are no airports with only incoming or outgoing flights and as
such, looking into one of origin, dest should suffice.

48

2.2 Finding adjunct airports

Assuming that we have computed a set containing the short codes of all airports
in the table, the next task is to find for each airport, which other airports are
directly connected to it, and then compute the volume of traffic between each
pair of adjunct airports. An imperative EOL program that can be used to achieve
this follows:

1 var origins = Flight.allInstances.origin.asSet();
2 for (origin in origins) {
3 var destinations = Flight.allInstances.dest.asSet();
4 for (destination in destinations) {
5 var numberOfFlights = Flight.allInstances.
6 select(f|f.origin = origin and f.dest = destination).
7 size();
8 }
9 }

The following observations can be made for the program above:

– Although the destinations result-set computed in line 3 does not change,
it needs to be re-computed for every nested iteration as the result of the
computation is streamed, and therefore only permits forward navigation;

– Unless care is taken to evaluate the right-hand side expressions in lines 1 and
3 using different database connections, the program will fail (as discussed
above, each MySQL connection only permits at most one streamed result-set
at a time);

– Iterating through all the rows of the Flight table in the select(. . .) method in
lines 5-7 is inefficient, particularly as the same result can be computed using
the following SQL statement select count(*) from Flight where origin=? and
destination=? (where ? should be replaced every time with the appropriate
origin/destination values).

2.3 Runtime SQL Query Generation

In this section we argue that while the naive way of evaluating OCL-like queries
on relational datasets can dramatically degrade performance (as shown in the
previous section), there are certain runtime optimisations that the execution en-
gine can perform to significantly reduce the execution time and memory footprint
of some types of queries.

After applying such optimisations, the following EOL transformation, can
transform the complete dataset (DB) in question to an EMF-based model (ATMS)
that conforms to the metamodel of Figure 2 in less than 45 seconds on average
hardware4. A visualisation of an excerpt of the extracted model appears in Figure
3.

The functionality of the transformation is outlined below:

– In line 1 it creates a new instance of the Model EClass in the ATMS EMF
(target) model;

4 CPU: 2.66 GHz Intel Core 2 Duo, RAM: 8 GB DDR3.

49

– In line 2 it computes a set of all origin airports in the Flight table;
– In line 4 it iterates through the set of strings computed in line 2;
– In line 5 it invokes the airportForName method defined in lines 21-30 which

returns an instance of the Airport EClass in the target model with a matching
name;

– In lines 6-7 it computes a set of adjunct airports to the origin airport;
– In lines 10-12 for each adjunct airport (destination), it computes the number

of flights between the two airports;
– In lines 13-16 it creates a new instance of the Route EClass in the target

model and populates its origin, destination and numberOfFlights properties.
– The airportForName() method in lines 21-30 is responsible for preventing

the creation of airports with duplicate names in the target model.

1 var m : new ATMS!Model;
2 var origins = DB!Flight.allInstances.origin.asSet();
3
4 for (origin in origins) {
5 var originAirport = airportForName(origin);
6 var destinations = DB!Flight.allInstances.
7 select(f|f.origin = origin).dest.asSet();
8
9 for (destination in destinations) {

10 var numberOfFlights = DB!Flight.allInstances.
11 select(f|f.origin = origin and f.dest = destination)
12 .size();
13 var route = new ATMS!Route;
14 route.origin = originAirport;
15 route.destination = airportForName(destination);
16 route.numberOfFlights = numberOfFlights.asInteger();
17 }
18
19 }
20
21 operation airportForName(name : String) {
22 var airport = ATMS!Airport.allInstances.
23 selectOne(a|a.name = name);
24
25 if (airport.isUndefined()) {
26 airport = new ATMS!Airport;
27 airport.name = name;
28 m.airports.add(airport);
29 }
30 return airport;
31 }

Listing 1.1. EOL transformation

To achieve an acceptable level of performance, we have extended the EOL
execution engine to use streamed lazy collections and a runtime OCL to SQL
query translation strategy for certain types of OCL expressions when the latter
are evaluated against relational datasets. Each lazy collection acts as a wrapper
for an SQL query generated at runtime and only starts streaming data from the
database if/when it needs to be iterated. This prevents unnecessary database
queries and enables multi-step query translation at runtime. An example of the
query translation process is illustrated in Figure 4 which calculates the average
delay of flights flying from JFK to LAX on Sundays. In particular, the following
OCL expressions are rewritten as SQL queries.

50

6 D. Kolovos et. al.

DTW ORD

SFO

AUS

550

518

620
589

161

126

Fig. 3. Visualisation of an excerpt of the model extracted using the transformation in
Listing 1.1

.allInstances Retrieving all the rows of a table in the database returns a
streamed lazy collection (ResultSetList) that is backed by a select * from
<table> SQL expression. For example, Flight.allInstances is translated to
select * from Flight.

.select(<iterator>|<condition>) ResultSetList overrides the built-in OCL
select operation, translates the EOL condition to an SQL expression, and
returns a new ResultSetList constrained by the latter. For example, Flight.
allInstances.select(f|f.origin = "JFK" and f.dayOfWeek=1) is translated into
select * from Flight where origin = ? and dayOfWeek = ? (the values of the
parameters – i.e. JFK and 1 – are kept separately and are only used if the
query needs to be executed). The condition can contain references to the
columns of the table, arithmetic, and logical operators at arbitrary levels of
nesting. The exists(), forAll() and reject() OCL operations behave similarly.

.collect(<iterator>|<expression>) ResultSetList overrides the built-in OCL
collect() operation to return a streamed lazy collection of primitive val-
ues (PrimitiveValuesList). For example, Flight.all.collect(f|f.dest + "-" +
f.origin) is translated to select origin + "-" + dest from Flight. In the spirit
of OCL, retrieving properties of collections is a short-hand notation for col-
lect(). For example, Flight.allInstances.dest is shorthand for Flight.allInstances.
collect(f|f.dest).

.size() Calls to the size() method of a ResultSetList/PrimitiveValuesList are
interpreted as count SQL queries. For example Flight.allInstances.size() is
translated to select count(*) from Flight.

asSet() Calls to asSet() method of a PrimitiveValuesList return a new Primi-
tiveValuesList backed by a distinct SQL query. For example, Flight.allInstances.
dest.asSet() returns a new PrimitiveValuesList backed by the following SQL
query: select distinct(dest) from Flight.

Streamed lazy collections also provide a fetch() method that executes their
underpinning query and returns a complete in-memory result-set which is navi-
gable in both directions. This is useful for small result-sets where the overhead
of maintaining the entire result-set is memory is preferable to the performance
overhead of streaming. To address the limitation of one streamed result-set per

51

Fig. 4. Multi-step SQL query generation process

connection, we are using a pool of connections for streamed result-sets: each
streamed result-set requests a connection from the pool when it needs to be
computed and returns it back to the pool when it has been fully iterated.

3 Related Work

Several researchers have proposed solutions for translating OCL to SQL. For
example, in [5], the authors demonstrate an approach for generating event-
condition-action (ECA) rules comprising SQL triggers and procedures from OCL
constraints attached to a UML class diagram, when the latter is translated into
a relational schema. In [6], the authors propose using OCL-derived views in re-
lational databases designed using UML, to check the integrity of the persisted
data. In this work each OCL constraint is translated into a view in the re-
lational database that contains reports of integrity violations. Such violations
can be handled using different strategies including rolling back the offending
transaction, triggering a data reconciliation action, or simply reporting the vio-
lation to application users. This approach has been implemented in the context
of the OCL2SQL prototype5. A similar approach is proposed by the authors
of [7]. In [8], the authors propose a framework for translating OCL invariants
into multiple query languages including SQL and XQuery using model-to-text
transformations.

All the approaches above propose compile-time translation of OCL to SQL.
By contrast, our approach proposes run-time generation and lazy evaluation of
SQL statements. While compile-time translation is feasible for side-effect free
OCL constraints that are evaluated against a homogeneous target (e.g. a rela-
tional database), for use-cases that involve querying and modifying models con-
forming to different technologies (e.g. a relational database and an EMF model),
this approach is not applicable. Another novelty of the approach proposed in this
paper is that it does not require a UML model that specifies the schema of the
database, and as such, it can be used on existing databases that have not been
developed in a UML-driven manner.

5 http://dresden-ocl.sourceforge.net/usage/ocl22sql/

52

4 Conclusions and Further Work

In this paper we have argued that it is important for model management lan-
guages to extend their scope beyond the narrow boundaries of 3-level metamod-
elling architectures such as MOF and EMF. In this direction, we have experi-
mented with using an OCL-based imperative transformation language to query
data stored in relational databases. We have reported on the identified chal-
lenges and proposed an approach for improving the performance of some types
of queries using run-time query translation.

In future iterations of this work, we plan to investigate the extent to which
compile-time static analysis and query rewriting can deliver additional benefits
in terms of performance. An obvious target is to use static analysis to limit the
number of columns returned by queries by excluding any columns that are never
accessed in the model management program, but additional optimisations are
also envisioned. We also plan to investigate supporting queries spanning more
than one tables by exploiting foreign keys.

Acknowledgements

This research was part supported by the EPSRC, through the Large-Scale Com-
plex IT Systems project (EP/F001096/1) and by the EU, through the Auto-
mated Measurement and Analysis of Open Source Software (OSSMETER) FP7
STREP project (318736).

References

1. Richard F. Paige, Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos, Fiona
A.C. Polack. The Design of a Conceptual Framework and Technical Infrastruc-
ture for Model Management Language Engineering. In Proc. 14th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, Potsdam, Ger-
many, 2009.

2. Dimitrios S. Kolovos, Louis M. Rose, Nicholas Matragkas, James Williams, Richard
F. Paige. A Lightweight Approach for Managing XML Documents with MDE Lan-
guages. In Proc. 8th European Conference on Modeling Foundations and Applica-
tions, Copenhagen, Denmark, July 2012.

3. Martins Francis, Dimitrios S. Kolovos, Nicholas Matragkas, Richard F. Paige.
Adding Spreadsheets to the MDE Toolbox. In Proc. ACM/IEEE 16th International
Conference on Model Driven Engineering Languages and Systems (MoDELS), Mi-
ami, USA, October 2013.

4. Dimitrios S. Kolovos, Richard F.Paige and Fiona A.C. Polack. The Epsilon Object
Language. In Proc. European Conference in Model Driven Architecture (EC-MDA)
2006, volume 4066 of LNCS, pages 128–142, Bilbao, Spain, July 2006.

5. D. Berrabah and F. Boufares. Constraints checking in uml class diagrams: Sql vs
ocl. In Roland Wagner, Norman Revell, and Ganther Pernul, editors, Database and
Expert Systems Applications, volume 4653 of Lecture Notes in Computer Science,
pages 593–602. Springer Berlin Heidelberg, 2007.

53

6. Birgit Demuth, Heinrich Hussmann, and Sten Loecher. Ocl as a specification lan-
guage for business rules in database applications. In Proc. 4th International Confer-
ence on The Unified Modeling Language, Modeling Languages, Concepts, and Tools,
UML ’01, pages 104–117, London, UK, UK, 2001. Springer-Verlag.

7. U. Marder, N. Ritter, H.-P. Steiert. A DBMS-based Approach for Automatic Check-
ing of OCL Constraints. In Proc. "Rigourous Modeling and Analysis with the UML:
Challenges and Limitations, OOPSLA workshop, 2009.

8. Heidenreich, F. and Wende, C. and Demuth, B. A Framework for Generating Query
Language Code from OCL Invariants. Electronic Communication of the European
Association of Software Science and Technology, 9, 2007.

54

	Article 2

