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Motivation

» Data used in MDE likely found in non-model
artefacts:

— Spreadsheets
— Databases
— XML documents

* Such data needs to be converted for use In
model transformations & queries
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The ATM System

origin dest depTime arrTime
ABE ATL 1557 1812
ABQ BWI 0735 1252
ANC ADQ 0804 0915
AZA DEN 1556 1731

1 Table (Flight)
e« > 200 Columns
> 500,000 Rows
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The Epsilon Modeling Suite & EOL

Model Refactoring (EWL) | Pattern Matching (EPL) | Model Validation (EVL)

Model Comparison (ECL) Model-to-model Transformation (ETL)

Task-specific
languages

Model Merging (EML) | Code Generation (EGL) Model Migration (Flock)
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The Epsilon Modeling Suite & EOL

Model Refactoring (EWL) | Pattern Matching (EPL) | Model Validation (EVL)

Model Comparison (ECL) Model-to-model Transformation (ETL)

Task-specific
languages

Model Merging (EML) | Code Generation (EGL) Model Migration (Flock)

47 extend

Epsilon Object Language (EOL) = JavaScript + OCL

Epsilon Model Connectivity (EMC)

implement ﬁx

Eclipse Modeling Framework (EMF) | Schema-less XML | Relational Store | NoSQL Store
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Challenges (1)

Taking the following OCL-like expression to retrieve the
number of distinct airports:

Flight.allInstances.origin.asSet().size()
We would need to:

1. Inspect the model and compute a collection of all model
elements of type Flight;

2. lterate through the contents of the collection (from step 1)
and collect the values of the property origin in a new
collection;

3. Remove all duplicates from the collection (from step 2);
4. Compute the size of the collection computed in step 3.
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Challenges (2)

The following issues arise if the information is stored in a
relational database:

« Computing the Flight.allinstances collection requires the
engine to perform a:

select * from Flight

SQL query. For large tables (such as Flight) the returned set
needs to be streamed from the database.

« Such streamed sets restrict us to:
— Forward-only iteration
— Size can only be calculated after exhaustive iteration
— Only 1 set can be streamed at a time in a MySQL store.

29/09/2013 XM'13 Miami 12/ 26
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Challenges (3)
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The following issues arise if the information is stored in a
relational database:

» The next step would be to iterate through all the rows of the
Flight table through the streamed set and collect the values
of origin.

« This iIs inefficient as using a:
select origin from Flight
SQL statement would be orders of magnitude faster.
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Challenges (4)

N

The following issues arise if the information is stored in a
relational database:

« Eliminating duplicates is similarly inefficient and can be
easily done using a

select distinct origin from Flight
SQL statement.

 Calculating the size of a streamed result-set without
Invalidating the result-set itself is an issue. By contrast, this
could be computed in one step using a:

select count(distinct origin) from Flight.
SQL statement.
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Solutions (1)

Calculate the average delay of flights flying from JFK to LAX on Sundays:

Flight.allInstances
select(f | f.origin="LAX")
select(f | f.dest="JFK”
and f.dayOf\Week=1)
.collect(f | f.delay)

.avg()
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Solutions (1)

Calculate the average delay of flights flying from JFK to LAX on Sundays:

Flight.alllnstances : ResultSetList

table = Flight
feature = *

Flight.allInstances
select(f | f.origin="LAX")
select(f | f.dest="JFK”
and f.dayOf\Week=1)
.collect(f | f.delay)

.avg()
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Solutions (1)

Calculate the average delay of flights flying from JFK to LAX on Sundays:

Flight.allinstances : ResultSetList [ : ResultSetList ]

.select(f | f.origin="LAX")
table = Flight table = Iill*ght
feature = * feature =
condition = (origin = ?)
parameters = {LAX}

Flight.allInstances
select(f | f.origin="LAX")
select(f | f.dest="JFK”
and f.dayOf\Week=1)
.collect(f | f.delay)

.avg()
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Solutions (1)

Calculate the average delay of flights flying from JFK to LAX on Sundays:
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condition = (origin = ?)
parameters = {LAX}

| .select(f | f.dest="JFK" [

and f.dayOfWeek>1)
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: ResultSetList

table = Flight

condition = (origin = ?) and (dest = ? and dayOfWeek = ?)
parameters = {LAX, JFK, 1}
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Solutions (1)

Calculate the average delay of flights flying from JFK to LAX on Sundays:

. . - [ .ResultsetList | -select(f| f.dest="JFK" [  ResultSetList ]
Flight.allinstances | : ResultSetList select(f | f.origin="LAX") and f.dayOfWeek>1)

feature = * feature = * feature = *
condition = (origin = ?) condition = (origin = ?) and (dest = ? and dayOfWeek = ?)
parameters = {LAX} parameters = {LAX, JFK, 1}

.delay / .collect(f | f.delay)

y
| : PrimitiveValuesList ]
table = Flight
feature = delay
condition = (origin = ?) and (dest = ? and dayOfWeek = ?)
parameters = {LAX, JFK, 1}

Flight.allInstances
select(f | f.origin="LAX")
select(f | f.dest="JFK”
and f.dayOf\Week=1)
.collect(f | f.delay)

.avg()
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Solutions (1)

Calculate the average delay of flights flying from JFK to LAX on Sundays:

. . - [ .ResultsetList | -select(f| f.dest="JFK" [  ResultSetList ]
Flight.allinstances | : ResultSetList select(f | f.origin="LAX") and f.dayOfWeek>1)

feature = * feature = * feature = *
condition = (origin = ?) condition = (origin = ?) and (dest = ? and dayOfWeek = ?)
parameters = {LAX} parameters = {LAX, JFK, 1}

.delay / .collect(f | f.delay)

y
: PrimitiveValuesList
select avg(delay) from Flight where P table = Flight
(origin = "LAX") and (dest = "JFK" and dayOfWeek = 1) feature = delay
condition = (origin = ?) and (dest = ? and dayOfWeek = ?)
avg() parameters = {LAX, JFK, 1}
Flight.allInstances

select(f | f.origin="LAX")
select(f | f.dest="JFK”
and f.dayOf\Week=1)
.collect(f | f.delay)

.avg()
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Solutions (1)

Calculate the average delay of flights flying from JFK to LAX on Sundays:

. . - [ .ResultsetList | -select(f| f.dest="JFK" [  ResultSetList ]
Flight.allinstances | : ResultSetList select(f | f.origin="LAX") and f.dayOfWeek>1)

feature = * feature = * feature = *
condition = (origin = ?) condition = (origin = ?) and (dest = ? and dayOfWeek = ?)
parameters = {LAX} parameters = {LAX, JFK, 1}

.delay / .collect(f | f.delay)

y
: PrimitiveValuesList ]
select avg(delay) from Flight where P table = Flight
(origin = "LAX") and (dest = "JFK" and dayOf\Week = 1) feature = delay
condition = (origin = ?) and (dest = ? and dayOfWeek = ?)
avg() parameters = {LAX, JFK, 1}
Flight.allInstances

select(f | f.origin="LAX") select avg(delay) from Flight where

select(f | f.dest="JFK” (origin="LAX")

and f.dayOfWeek=1) and )
collect(f | f.delay) (dest="JFK” and dayOf\Week=1)

.avg()
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Solutions (2)

EOL Engine Extension for SQL.:

.allInstances Returns a streamed lazy collection (ResultSetList)
backed by a select * from <table> SQL expression.

select(<iterator>|<condition>) Translates the EOL condition to
an SQL expression, and returns a new ResultSetList. Similarly for
exists(), forAll() and reject() OCL operations.

.collect(<iterator>|<expression>) Returns a streamed lazy
collection of primitive values (PrimitiveValuesList). Calls to the
size() method are interpreted as count SQL queries.

asSet() Returns a new PrimitiveValuesList backed by a distinct
SQL query.
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Extracted Facts

Analysis of this dataset reveals:

« Of the 306 airports, 68 (>20%) are connected directly to
only 1 other airport;

« The most distant pair of airports are ABE and BRW. A
passenger needs to change 4 flights (ABE-DTW-SEA-FAI-
BRW);

« The Atlanta International Airport (ATL) is the busiest
airport (# of flights going through it - 67,717), followed by
ORD and DFW;

« ATL Is the best-connected airport with direct flights to 148
other airports;

« >50% of all the flights go through the 18 busiest airports &
>90% of all flights go through the 91 busiest airports.
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Conclusion & Further Work

 MDE can greatly benefit from using technologies
outside MOF and EMF

* If integrated correctly, relational datasets can be used to
contain model data

* The challenges lay in identifying and optimising the
way such stores are queried

« We aim at investigating the impact of compile-time
static analysis on performance

« We aim at supporting multi-table querying (and hence
transformations) by use of foreign keys
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Questions?
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