: s | o AN
EPARTMENT OF COMPUTER SCIENCE [{¥E={5a87 100 THE

An Approach for Efficient Querying
of Large Relational Datasets with
OCL-based Languages

Dimitrios S. Kolovos
Ran Wel

Konstantinos Barmpis
{dimitris.kolovos, rw542, kb634}@york.ac.uk

29/09/2013

2 Pnss | ~ AN = -
DEPARTMENT OF COMPUTER SCIENCE NE=R7ti~] THE UNIVERSITY S/ | fork

Motivation

» Data used in MDE likely found in non-model
artefacts:

— Spreadsheets
— Databases
— XML documents

* Such data needs to be converted for use In
model transformations & queries

29/09/2013 XM'13 Miami

DEPARTMENT OF COMPUTER SCIENCE <=

g

ffg THE UNIVERSITY/ Jfork

The ATM System

origin dest depTime arrTime
ABE ATL 1557 1812
ABQ BWI 0735 1252
ANC ADQ 0804 0915
AZA DEN 1556 1731

1 Table (Flight)
e« > 200 Columns
> 500,000 Rows

29/09/2013

XM'13 Miami

DEPARTMENT OF COMPUTER SCIENCE NE=ias7 i] THE UNIVERSITY S/ | fork

The ATM System

origin dest depTime | arrTime 550
ABE ATL 1557 1812 ~A
ABQ BWI 0735 1252 161
ANC ADQ 0804 0915
AZA DEN 1556 1731 518 \
e

620 589 126

<

H Route 0.
= numberOfFlights : Elntf———
incoming
outgoing | 0..*
origin 0.1 0..1] destination
’ 0
H Airport

l airports 0__: = name : EString

H Model

‘MZTI ‘MZMI M

29/09/2013 XM'13 Miami

DEPARTMENT OF COMPUTER SCIENCE {48=5e97 1] THE UNIVERSITY S/ Jfork

The ATM System

origin dest depTime | arrTime 550
ABE ATL 1557 1812
ABQ BWI 0735 1252 161
ANC ADQ 0804 0915
AZA DEN 1556 1731 518 \
e
620 589 126

s y

s ——
H Route ,
0.*
= numberOfFlights : Elnt incoming Java
outgoing | 0..*
origin 0.1 0..1| destination
H Airport

l airports 0..*|_=_name : EString

H Model

T ‘MZM|

29/09/2013 XM'13 Miami

DEPARTMENT OF COMPUTER SCIENCE {48=5e97 1] THE UNIVERSITY S/ Jfork

The ATM System

origin dest depTime | arrTime 550
ABE ATL 1557 1812 ~A
ABQ BWI 0735 1252 161
ANC ADQ 0804 0915
AZA DEN 1556 1731 518 \
620 589 126

<

H Route 0.
= numberOfFlights : Elntf———
incoming
outgoing | 0..*
origin 0.1 0..1| destination
‘ 0
H Airport

l airports 0__: = name : EString

H Model

M2T ‘MZMI M

29/09/2013 XM'13 Miami

DEPARTMENT OF COMPUTER SCIENCE {4

=] THE UNIVERSITY S/) fork

The ATM System

origin dest depTime | arrTime 550
ABE |ATL 1557 1812 T~a
ABQ BWI 0735 1252 161
ANC ADQ 0804 0915
AZA DEN 1556 1731 518 \
e
620 s89 126

<

H Route
= numberOfFlights : Elnt

O *
incoming

outgoing | 0..*

origin 0.1 0..1| destination

E Airport
l airports 0..*|_=_name : EString

H Model

‘MZTI ‘MZM' M

XM'13 Miami

29/09/2013

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=OgtnhyI5c0AN9M&tbnid=uMa3Ehahe8FjtM:&ved=0CAUQjRw&url=http://www.eclipse.org/epsilon/&ei=j4tBUvLdGcWShgfukYHIBg&psig=AFQjCNE_AmC96Cs4bZHWmXO9p2F9IdZN2Q&ust=1380113654810493

DEPARTMENT OF COMPUTER SCIENCE NE=ias7 i] THE UNIVERSITY S/ | fork

The Epsilon Modeling Suite & EOL

Model Refactoring (EWL) | Pattern Matching (EPL) | Model Validation (EVL)

Model Comparison (ECL) Model-to-model Transformation (ETL)

Task-specific
languages

Model Merging (EML) | Code Generation (EGL) Model Migration (Flock)

29/09/2013 XM'13 Miami

DEPARTMENT OF COMPUTER SCIENCE NE=ias7 i] THE UNIVERSITY S/ | fork

The Epsilon Modeling Suite & EOL

Model Refactoring (EWL) | Pattern Matching (EPL) | Model Validation (EVL)

Model Comparison (ECL) Model-to-model Transformation (ETL)

Task-specific
languages

Model Merging (EML) | Code Generation (EGL) Model Migration (Flock)

Eclipse Modeling Framework (EMF) | Schema-less XML | Relational Store | NoSQL Store

Meta Data Repository (MDR) CSVv Bibtex MetaEdit+

_U
=
@]
Q
o
" wn
1 A
> Q
oo >
O '
o ©
(e
<
Q
Q
—

29/09/2013 XM'13 Miami

DEPARTMENT OF COMPUTER SCIENCE NE=ias7 i] THE UNIVERSITY S/ | fork

The Epsilon Modeling Suite & EOL

Model Refactoring (EWL) | Pattern Matching (EPL) | Model Validation (EVL)

Model Comparison (ECL) Model-to-model Transformation (ETL)

Task-specific
languages

Model Merging (EML) | Code Generation (EGL) Model Migration (Flock)

47 extend

Epsilon Object Language (EOL) = JavaScript + OCL

Epsilon Model Connectivity (EMC)

implement ﬁx

Eclipse Modeling Framework (EMF) | Schema-less XML | Relational Store | NoSQL Store

Meta Data Repository (MDR) CSVv Bibtex MetaEdit+

_U
=
@]
Q
o
" wn
1 A
> Q
oo >
O '
o ©
(e
<
Q
Q
—

29/09/2013 XM'13 Miami

i Fons | o AT e -
DEPARTMENT OF COMPUTER SCIENCE [4E=R%87 1001 THE UNIVERSITY 9/ l/on('

Challenges (1)

Taking the following OCL-like expression to retrieve the
number of distinct airports:

Flight.allInstances.origin.asSet().size()
We would need to:

1. Inspect the model and compute a collection of all model
elements of type Flight;

2. lterate through the contents of the collection (from step 1)
and collect the values of the property origin in a new
collection;

3. Remove all duplicates from the collection (from step 2);
4. Compute the size of the collection computed in step 3.

29/09/2013 XM'13 Miami

A Fin | o DATTAS . -
DEPARTMENT OF COMPUTER SCIENCE [4E=R%87 1001 THE UNIVERSITY 9/ l/on('

Challenges (2)

The following issues arise if the information is stored in a
relational database:

« Computing the Flight.allinstances collection requires the
engine to perform a:

select * from Flight

SQL query. For large tables (such as Flight) the returned set
needs to be streamed from the database.

« Such streamed sets restrict us to:
— Forward-only iteration
— Size can only be calculated after exhaustive iteration
— Only 1 set can be streamed at a time in a MySQL store.

29/09/2013 XM'13 Miami 12/ 26

/TN : -
7| THE UNIVERSITY S/ | fork

DEPARTMENT OF COMPUTER SCIENCE

Challenges (3)

S =k P
S LQ

The following issues arise if the information is stored in a
relational database:

» The next step would be to iterate through all the rows of the
Flight table through the streamed set and collect the values
of origin.

« This iIs inefficient as using a:
select origin from Flight
SQL statement would be orders of magnitude faster.

29/09/2013 XM'13 Miami

= o P | o AN - -
DEPARTMENT OF COMPUTER SCIENCE {E=R0gf7 i) THE UNIVERSITY/ Jfork

Challenges (4)

N

The following issues arise if the information is stored in a
relational database:

« Eliminating duplicates is similarly inefficient and can be
easily done using a

select distinct origin from Flight
SQL statement.

 Calculating the size of a streamed result-set without
Invalidating the result-set itself is an issue. By contrast, this
could be computed in one step using a:

select count(distinct origin) from Flight.
SQL statement.

29/09/2013 XM'13 Miami

Fons | o AT B -
DEPARTMENT OF COMPUTER SCIENCE N8 1] THE UNIVERSITY S/] fork

Solutions (1)

Calculate the average delay of flights flying from JFK to LAX on Sundays:

Flight.allInstances
select(f | f.origin="LAX")
select(f | f.dest="JFK”
and f.dayOf\Week=1)
.collect(f | f.delay)

.avg()

29/09/2013 XM'13 Miami

= < - o AN i D 2 &
DEPARTMENT OF COMPUTER SCIENCE [4E=R%87 1081 THE UNIVERSITY 9/ l/w,(’

Solutions (1)

Calculate the average delay of flights flying from JFK to LAX on Sundays:

Flight.alllnstances : ResultSetList

table = Flight
feature = *

Flight.allInstances
select(f | f.origin="LAX")
select(f | f.dest="JFK”
and f.dayOf\Week=1)
.collect(f | f.delay)

.avg()

29/09/2013 XM'13 Miami

DEPARTMENT OF COMPUTER SCIENCE NE=ias7 i] THE UNIVERSITY S/ | fork

Solutions (1)

Calculate the average delay of flights flying from JFK to LAX on Sundays:

Flight.allinstances : ResultSetList [: ResultSetList]

.select(f | f.origin="LAX")
table = Flight table = Iill*ght
feature = * feature =
condition = (origin = ?)
parameters = {LAX}

Flight.allInstances
select(f | f.origin="LAX")
select(f | f.dest="JFK”
and f.dayOf\Week=1)
.collect(f | f.delay)

.avg()

29/09/2013 XM'13 Miami

: ResultSetList

S

Flight.allinstances

table = Flight

DEPARTMENT OF COMPUTER SCIENCE {48 Rgs tin

Solutions (1)

Calculate the average delay of flights flying from JFK to LAX on Sundays:

: ResultSetList

.select(f | f.origin="LAX")
| table = Flight
7| feature = *

T

Flight.allInstances
select(f | f.origin="LAX")
select(f | f.dest="JFK”
and f.dayOf\Week=1)
.collect(f | f.delay)

29/09/2013

condition = (origin = ?)
parameters = {LAX}

| .select(f | f.dest="JFK" [

and f.dayOfWeek>1)

XM'13 Miami

: ResultSetList

table = Flight

condition = (origin = ?) and (dest = ? and dayOfWeek = ?)
parameters = {LAX, JFK, 1}

DEPARTMENT OF COMPUTER SCIENCE NE=ias7 i] THE UNIVERSITY S/ | fork

Solutions (1)

Calculate the average delay of flights flying from JFK to LAX on Sundays:

. . - [.ResultsetList | -select(f| f.dest="JFK" [ResultSetList]
Flight.allinstances | : ResultSetList select(f | f.origin="LAX") and f.dayOfWeek>1)

feature = * feature = * feature = *
condition = (origin = ?) condition = (origin = ?) and (dest = ? and dayOfWeek = ?)
parameters = {LAX} parameters = {LAX, JFK, 1}

.delay / .collect(f | f.delay)

y
| : PrimitiveValuesList]
table = Flight
feature = delay
condition = (origin = ?) and (dest = ? and dayOfWeek = ?)
parameters = {LAX, JFK, 1}

Flight.allInstances
select(f | f.origin="LAX")
select(f | f.dest="JFK”
and f.dayOf\Week=1)
.collect(f | f.delay)

.avg()

29/09/2013 XM'13 Miami

DEPARTMENT OF COMPUTER SCIENCE NE=ias7 i] THE UNIVERSITY S/ | fork

Solutions (1)

Calculate the average delay of flights flying from JFK to LAX on Sundays:

. . - [.ResultsetList | -select(f| f.dest="JFK" [ResultSetList]
Flight.allinstances | : ResultSetList select(f | f.origin="LAX") and f.dayOfWeek>1)

feature = * feature = * feature = *
condition = (origin = ?) condition = (origin = ?) and (dest = ? and dayOfWeek = ?)
parameters = {LAX} parameters = {LAX, JFK, 1}

.delay / .collect(f | f.delay)

y
: PrimitiveValuesList
select avg(delay) from Flight where P table = Flight
(origin = "LAX") and (dest = "JFK" and dayOfWeek = 1) feature = delay
condition = (origin = ?) and (dest = ? and dayOfWeek = ?)
avg() parameters = {LAX, JFK, 1}
Flight.allInstances

select(f | f.origin="LAX")
select(f | f.dest="JFK”
and f.dayOf\Week=1)
.collect(f | f.delay)

.avg()

29/09/2013 XM'13 Miami

DEPARTMENT OF COMPUTER SCIENCE NE=ias7 i] THE UNIVERSITY S/ | fork

Solutions (1)

Calculate the average delay of flights flying from JFK to LAX on Sundays:

. . - [.ResultsetList | -select(f| f.dest="JFK" [ResultSetList]
Flight.allinstances | : ResultSetList select(f | f.origin="LAX") and f.dayOfWeek>1)

feature = * feature = * feature = *
condition = (origin = ?) condition = (origin = ?) and (dest = ? and dayOfWeek = ?)
parameters = {LAX} parameters = {LAX, JFK, 1}

.delay / .collect(f | f.delay)

y
: PrimitiveValuesList]
select avg(delay) from Flight where P table = Flight
(origin = "LAX") and (dest = "JFK" and dayOf\Week = 1) feature = delay
condition = (origin = ?) and (dest = ? and dayOfWeek = ?)
avg() parameters = {LAX, JFK, 1}
Flight.allInstances

select(f | f.origin="LAX") select avg(delay) from Flight where

select(f | f.dest="JFK” (origin="LAX")

and f.dayOfWeek=1) and)
collect(f | f.delay) (dest="JFK” and dayOf\Week=1)

.avg()

29/09/2013 XM'13 Miami

i Fons | o AT e -
DEPARTMENT OF COMPUTER SCIENCE [4E=R%87 1001 THE UNIVERSITY 9/ l/on('

Solutions (2)

EOL Engine Extension for SQL.:

.allInstances Returns a streamed lazy collection (ResultSetList)
backed by a select * from <table> SQL expression.

select(<iterator>|<condition>) Translates the EOL condition to
an SQL expression, and returns a new ResultSetList. Similarly for
exists(), forAll() and reject() OCL operations.

.collect(<iterator>|<expression>) Returns a streamed lazy
collection of primitive values (PrimitiveValuesList). Calls to the
size() method are interpreted as count SQL queries.

asSet() Returns a new PrimitiveValuesList backed by a distinct
SQL query.

29/09/2013 XM'13 Miami

DEPARTMENT OF COMPUTER SCIENCE [<E

THE UNIVERSITY S/] fork

The ATM System

origin dest depTime | arrTime 550
ABE ATL 1557 1812
ABQ BWI 0735 1252 161
ANC ADQ 0804 0915
AZA DEN 1556 1731 518 \
e
620 s89 126

i <

H Route
= numberOfFlights : Elnt

O *
incoming

outgoing | 0..*

origin 0.1 0..1| destination

E Airport
l airports 0..*|_=_name : EString

H Model

XM'13 Miami

29/09/2013

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=OgtnhyI5c0AN9M&tbnid=uMa3Ehahe8FjtM:&ved=0CAUQjRw&url=http://www.eclipse.org/epsilon/&ei=j4tBUvLdGcWShgfukYHIBg&psig=AFQjCNE_AmC96Cs4bZHWmXO9p2F9IdZN2Q&ust=1380113654810493

A Fin | o DATTAS . -
DEPARTMENT OF COMPUTER SCIENCE [4E=R%87 1001 THE UNIVERSITY 9/ l/on(f

Extracted Facts

Analysis of this dataset reveals:

« Of the 306 airports, 68 (>20%) are connected directly to
only 1 other airport;

« The most distant pair of airports are ABE and BRW. A
passenger needs to change 4 flights (ABE-DTW-SEA-FAI-
BRW);

« The Atlanta International Airport (ATL) is the busiest
airport (# of flights going through it - 67,717), followed by
ORD and DFW;

« ATL Is the best-connected airport with direct flights to 148
other airports;

« >50% of all the flights go through the 18 busiest airports &
>90% of all flights go through the 91 busiest airports.

29/09/2013 XM'13 Miami

‘ o LA
DEPARTMENT OF COMPUTER SCIENCE EE—' THE UNIVERSITY S/ 1/0/'(

Conclusion & Further Work

 MDE can greatly benefit from using technologies
outside MOF and EMF

* If integrated correctly, relational datasets can be used to
contain model data

* The challenges lay in identifying and optimising the
way such stores are queried

« We aim at investigating the impact of compile-time
static analysis on performance

« We aim at supporting multi-table querying (and hence
transformations) by use of foreign keys

29/09/2013 XM'13 Miami

DEPARTMENT OF COMPUTER SCIENCE <% 1] THE UNl\v'lzRSI'qu/'I)/(m(;

Questions?

29/09/2013 XM'13 Miami

