THE UNIVERSITY of Vork

An Approach for Efficient Querying of Large Relational Datasets with OCL-based Languages

Dimitrios S. Kolovos Ran Wei **Konstantinos Barmpis** {dimitris.kolovos, rw542, kb634}@york.ac.uk

Motivation

- Data used in MDE likely found in non-model artefacts:
 - Spreadsheets
 - Databases
 - XML documents
- Such data needs to be converted for use in model transformations & queries

origin	dest	depTime	arrTime		
ABE	ATL	1557	1812		
ABQ	BWI	0735	1252		
ANC	ADQ	0804	0915		
AZA	DEN	1556	1731		

- 1 Table (Flight)
- > 200 Columns
- > 500,000 Rows

THE UNIVERSITY of Vork

The Epsilon Modeling Suite & EOL

Task-specific languages

Model Refactoring (EWL)		Pattern Matching (EPL)		Model Validation (EVL)	
Model Comparison (ECL)		Model-to-mo	od	el Transformation (ETL)	
Model Merging (EML)	Сс	Code Generation (EGL)		Model Migration (Flo	ock)

THE UNIVERSITY of Uork

The Epsilon Modeling Suite & EOL

cific	es
-spe	guag
Task	lang

	Model Refactoring (EWL)		Pattern Matching (EPL)	L) Model Validation (EVL)				
5	Model Comparison (EC	L)	Model-to-mo	ode	del Transformation (ETL)			
	Model Merging (EML)	Сс	ode Generation (EGL)		Model Migration (Flock)			

Eclipse Modeling Framework (EMF)			Schema-less XML		Relational Store	NoSQL Store	
Meta Data Repository (MDR)	CSV		Bibtex		MetaEdit+		

The Epsilon Modeling Suite & EOL

Challenges (1)

Taking the following OCL-like expression to retrieve the number of distinct airports:

Flight.allInstances.origin.asSet().size()

We would need to:

- 1. Inspect the model and compute a collection of all model elements of type Flight;
- Iterate through the contents of the collection (from step 1) and collect the values of the property *origin* in a new collection;
- 3. Remove all duplicates from the collection (from step 2);
- 4. Compute the size of the collection computed in step 3.

Challenges (2)

The following issues arise if the information is stored in a relational database:

• Computing the *Flight.allInstances* collection requires the engine to perform a:

select * from Flight

SQL query. For large tables (such as Flight) the returned set needs to be streamed from the database.

- Such streamed sets restrict us to:
 - Forward-only iteration
 - Size can only be calculated after exhaustive iteration
 - Only 1 set can be streamed at a time in a MySQL store.

Challenges (3)

The following issues arise if the information is stored in a relational database:

- The next step would be to iterate through all the rows of the Flight table through the streamed set and collect the values of *origin*.
- This is inefficient as using a:

select origin from Flight

SQL statement would be orders of magnitude faster.

Challenges (4)

The following issues arise if the information is stored in a relational database:

• Eliminating duplicates is similarly inefficient and can be easily done using a

select distinct origin from Flight

SQL statement.

• Calculating the size of a streamed result-set without invalidating the result-set itself is an issue. By contrast, this could be computed in one step using a:

select count(distinct origin) from Flight.

SQL statement.

```
Flight.allInstances
.select(f | f.origin="LAX")
.select(f | f.dest="JFK"
and f.dayOfWeek=1)
.collect(f | f.delay)
.avg()
```



```
Flight.allInstances
.select(f | f.origin="LAX")
.select(f | f.dest="JFK"
and f.dayOfWeek=1)
.collect(f | f.delay)
.avg()
```



```
Flight.allInstances
.select(f | f.origin="LAX")
.select(f | f.dest="JFK"
and f.dayOfWeek=1)
.collect(f | f.delay)
.avg()
```



```
Flight.allInstances
.select(f | f.origin="LAX")
.select(f | f.dest="JFK"
and f.dayOfWeek=1)
.collect(f | f.delay)
.avg()
```

Calculate the average delay of flights flying from JFK to LAX on Sundays:

Flight.allInstances

.select(f | f.origin="LAX")
.select(f | f.dest="JFK"
and f.dayOfWeek=1)
.collect(f | f.delay)
.avg()

Calculate the average delay of flights flying from JFK to LAX on Sundays:

Flight.allInstances

.select(f | f.origin="LAX")
.select(f | f.dest="JFK"
and f.dayOfWeek=1)
.collect(f | f.delay)
.avg()

Calculate the average delay of flights flying from JFK to LAX on Sundays:

29/09/2013

- EOL Engine Extension for SQL:
- **.allInstances** Returns a streamed lazy collection (*ResultSetList*) backed by a *select* * *from* <*table*> SQL expression.
- **.select**(**<iterator>**|**<condition>**) Translates the EOL condition to an SQL expression, and returns a new *ResultSetList*. Similarly for exists(), forAll() and reject() OCL operations.
- **.collect**(**<iterator>**|**<expression>**) *R*eturns a streamed lazy collection of primitive values (*PrimitiveValuesList*). Calls to the size() method are interpreted as count SQL queries.
- **asSet()** Returns a new *PrimitiveValuesList* backed by a distinct SQL query.

Extracted Facts

Analysis of this dataset reveals:

- Of the 306 airports, 68 (>20%) are connected directly to only 1 other airport;
- The most distant pair of airports are ABE and BRW. A passenger needs to change 4 flights (ABE-DTW-SEA-FAI-BRW);
- The Atlanta International Airport (ATL) is the busiest airport (# of flights going through it 67,717), followed by ORD and DFW;
- ATL is the best-connected airport with direct flights to 148 other airports;
- >50% of all the flights go through the 18 busiest airports & >90% of all flights go through the 91 busiest airports.

- MDE can greatly benefit from using technologies outside MOF and EMF
- If integrated correctly, relational datasets can be used to contain model data
- The challenges lay in identifying and optimising the way such stores are queried
- We aim at investigating the impact of compile-time static analysis on performance
- We aim at supporting multi-table querying (and hence transformations) by use of foreign keys

DEPARTMENT OF COMPUTER SCIENCE

Questions?

