
Program Chairs
Bernhard Schätz
fortiss GmbH, Germany
Dirk Deridder
Smals, Belgium
Alfonso Pierantonio
Università degli Studi dell'Aquila, Italy
Jonathan Sprinkle
University of Arizona, USA
Dalila Tamzalit
LINA, University of Nantes, France

Steering Committee
Dirk Deridder
Smals, Belgium
Hubert Dubois
CEA LIST, France
Jeff Gray
University of Alabama, USA
Tom Mens
Université de Mons, Belgium
Alfonso Pierantonio
Università degli Studi dell'Aquila, Italy
Bernhard Schätz
fortiss GmbH, Germany
Pierre-Yves Schobbens
University of Namur, Belgium
Dalila Tamzalit
LINA, University of Nantes, France
Stefan Wagner
University of Stuttgart, Germany

Program Committee
Arnaud Albinet
Continental Automotive, France
Mireille Blay-Fornarino
Université de Nice-Sophia Antipolis, France
Jean-Michel Bruel
University of Toulouse, France
Jordi Cabot
EMN Nantes, France
Rubby Casallas
University of Los Andes, Colombia
Antonio Cicchetti
Mälardalen University, Sweden
Davide Di Ruscio
Università degli Studi dell'Aquila, Italy
Anne Etien
INRIA Futurs, France
Jesus Garcia Molina
Universidad de Murcia, Spain
David Garlan
CMU, USA
Ethan Jackson
Microsoft Research, USA
Gerti Kappel
TU Wien, Austria
Udo Kelter
Universität Siegen, Germany
Olivier Le Goaer
LINA, University of Nantes, France
Richard Paige
University of York, United Kingdom
Mario Sanchez
Universidad de los Andes, Colombia
Eugene Syriani
McGill University, Canada
Ragnhild Van Der Straeten
Vrije Universiteit, Belgium
Hans Vangheluwe
Universiteit Antwerpen, Belgium

International Workshop on
Models and Evolution

ME 2011

ACM/IEEE 14th International
Conference on Model Driven

Engineering Languages and
Systems

Wellington, New Zealand
October 16-21, 2011

http://www.di.univaq.it/ME2011/

Preliminary Proceedings

Table of Contents

A Domain Specific Transformation Language
Ingo Weisemoeller and Bernhard Rumpe

Beyond MOF - Multiple Constraint Set Metamodelling for Lifecycle Management
Keith Duddy, Jörg Kiegeland

Towards Semantics-Aware Merge Support in Optimistic Model Versioning
Petra Brosch, Uwe Egly, Sebastian Gabmeyer, Gerti Kappel, Martina Seidl, Hans Tompits,
Magdalena Widl and Manuel Wimmer

Domain Specific Language Modeling Facilities
Jean-Philippe Babau and Mickael Kerboeuf

Summarizing Semantic Model Differences
Shahar Maoz, Jan Oliver Ringert and Bernhard Rumpe

On the Use of Operators for the Co-Evolution of Metamodels and Transformations
Steffen Kruse

Towards Feature-Based Evolutionary Software Modeling
Hassan Gomaa

A Domain Specific Transformation Language

Bernhard Rumpe and Ingo Weisemöller

Software Engineering
RWTH Aachen University, Germany

http://www.se-rwth.de/

Abstract. Domain specific languages (DSLs) allow domain experts to
model parts of the system under development in a problem-oriented no-
tation that is well-known in the respective domain. The introduction of a
DSL is often accompanied the desire to transform its instances. Although
the modeling language is domain specific, the transformation language
used to describe modifications, such as model evolution or refactoring
operations, on the underlying model, usually is a rather domain inde-
pendent language nowadays.
Most transformation languages use a generic notation of model patterns
that is closely related to typed and attributed graphs or to object di-
agrams (the abstract syntax). A notation that reflects the transformed
elements of the original DSL in its own concrete syntax would be strongly
preferable, because it would be more comprehensible and easier to learn
for domain experts. In this paper we present a transformation language
that reuses the concrete syntax of a textual modeling language for hier-
archical automata, which allows domain experts1 to describe models as
well as modifications of models in a convenient, yet precise manner. As
an outlook, we illustrate a scenario where we generate transformation
languages from existing textual languages.
Keywords: domain specific languages, model transformations.

1 Introduction and Problem Statement

Domain specific languages (DSLs) have the advantage of allowing domain experts
to model parts of the system in a problem-oriented notation that is well-known in
the respective domain. Like most documents in software development processes,
models in DSLs underly frequent changes. These may include refactorings, au-
tomated modifications, or complex editing operations. Change operations on
models can be described in explicitly defined model transformations.

To define a model transformation, we need an appropriate transformation
language. Today’s transformation languages [7] however operate on the abstract
syntax and thus look very different from the DSL to be transformed. In the
following sections, we are going to present an approach to close this gap.

1 In our wording, the term “domain” refers to application domains such as business
processes or a discipline of engineering as well as to technical domains such as rela-
tional databases or state based systems.

If the user wants to keep the look-and-feel of the DSL within the transfor-
mation language, then this language needs to embody elements of the concrete
syntax of the underlying DSL, and is thus domain specific itself. Consequently,
instead of having a single language for transformations of models in arbitrary
DSLs, we would prefer a syntactically fitting transformation language that pro-
vides the same look-and-feel as the DSL at hand.

In this contribution, we state that the concrete syntax of a textual DSL can
be reused to describe transformation rules, thus providing this look-and-feel. We
substantiate our claim by the introduction of a transformation rule used in the
process of flattening hierarchical automata and of the corresponding transfor-
mation language. Because the elements of the transformation language depend
on the elements of the automata language in a systematic manner, we believe
it is possible to systematically if not automatically derive the transformation
language from a given DSL.

The following sections are outlined as follows: In Section 2 we provide a brief
introduction to graph based model transformations, based on a rule used in the
process of flattening hierarchical automata. We are going to reuse this example in
the subsequent sections. Section 3 gives an introduction to existing approaches
to the definition of model transformations in a domain specific notation. In
Section 4 we explain what transformation rules in concrete syntax look like.
In Section 5 we summarize the previous sections and give an overview of our
ongoing and future work in this area.

2 Abstract and Concrete Syntax in Transformations

In the following, we consider transformation rules to be small steps of transfor-
mation in an appropriate language, which may be composed to more complex
transformation sequences by control structures or rule application strategies.
Composition mechanisms may vary (cf. [7, 17]), whereas we encounter some kind
of transformation rules in almost any transformation language. Therefore and for
reasons of space, we leave composition mechanisms out of consideration. Instead,
we focus on the notation of transformation rules.

In graph based transformation approaches, rules consist of a left hand side
(LHS) and a right hand side (RHS), which describe excerpts from a model that
the transformation can be applied to (see [15, 12]). Informally explained, the LHS
describes a part of the model before the application of the transformation rule,
whereas the RHS describes the same part of the model after the rule application.

Because we basically describe excerpts from models, i.e. instances of a mod-
eling language, in the LHS and RHS of a transformation rule, it seems natural
to reuse the syntax of the modeling language when describing transformation
rules. In current transformation approaches however, this reuse is limited to the
abstract syntax for a variety of reasons, which means that the concrete syntax
of the modeling language is not reflected in the transformation language.

We are going to show the difference between reusing the abstract syntax
only and reusing both abstract and concrete syntax based on a transformation

rule for hierarchical automata. The rule we consider is used in the process of
flattening hierarchical automata, which is a simplified case of the transformations
for flattening UML state machines (cf. [18, pp. 227 ff.] for details).

operating

off

⇔ starting

operating

off

starting

switchedOn switchedOn

equivalent
automata

1 state off; state off;

2

3 state operating { state operating {

4 state starting <<initial>>; <=> state starting;

5 } }

6

7 off -switchedOn> operating; off -switchedOn> starting;

Fig. 1. Equivalent automata in graphical and textual representation

Before investigating the transformation rule itself, we take a look at the
syntax of the DSL for hierarchical automata. Figure 1 shows both a graphical and
textual representation of a hierarchical automaton on the left, and a graphical
and textual representation of a semantically equivalent automaton on the right.
The automaton on the right is obtained from the one on the left by forwarding
the transition to the nested initial state. The upper part of the figure shows
the automata in a graphical syntax, whereas the notation in the lower half is a
textual representation of the same automata.

A model transformation rule that can transform an automaton on the left
into the equivalent automaton on the right consists of two parts: a LHS, which
matches a part of the automaton similar to the left side of Figure 1, and a RHS,
which specifies the replacement, and which is similar to the right side of Figure 1.
We ignore the RHS of the rule for the moment and take a look at the pattern
matching part on the left only: Figure 2 shows the difference between a pattern
based on the abstract syntax of the textual DSL from Figure 1, and the same
pattern in a notation based on the concrete syntax of that language.

The language of the object diagram pattern in the upper part of the figure
reuses the abstract syntax of the automata DSL. The same applies to the second
notation (which we did not define explicitly, but is inspired by MOF QVT [11]
and OCL [10]). Please note that these patterns are written in pseudocode rather
than being executable by some tool, but they depict the general style of trans-
formation languages based on the abstract syntax.

:Outgoing
t1 : Transition

s2: State

s1: State
:Incoming

: StateHasSubstates

s3: State

initial = true

substates

: TransitionHasLabel

e: Label

UML object diagram

Automaton pattern in OCL-like abstract syntax

1 s1 : State;

2 s2 : State;

3 s3 : State;

4 t : Transition;

5 e : Label;

6

7 s2.substates->contains(s3);

8 s3.initial = true;

9 t.source = s1;

10 t.target = s2;

11 t.label = e;

Automaton pattern in concrete syntax

1 state $source;

2

3 state $outer {

4 state $inner <<initial>>;

5 }

6

7 $source -$event> $outer;

Fig. 2. Three variants of the LHS of a rule for transition forwarding

The statements in this pattern are either declarations of typed objects (ll.
1-5), links (l. 7) or additional constraints for these objects (ll. 8-11).

In comparison to this, the pattern based on the concrete syntax of the DSL,
which is shown in the lower part of Figure 2, is more compact and easier to read.
This is because the transformation language used here is close to the underlying
modeling language rather than based on lists of objects, links and constraints.

The pattern matching language differs from the modeling language itself
mainly in the use of schema variables such as $source that act as placeholders
for concrete elements from the model.

3 Related Work

A number of publications addresses the specification of model transformations
in a notation close to or identical to the corresponding modeling languages. This
is usually referred to as transformations in concrete syntax, for instance by T.
Baar and J. Whittle [3] as well as by M. Schmidt [19]. We will adopt this term
for the remainder of this paper.

Both publications mentioned above adapt the concrete syntax of visual mod-
eling languages for the specification of transformation rules. In either approach,
the adaption of the syntax is performed manually. To our best knowledge, there
is no implementation of either of these approaches available.

Several researchers have spent work on the derivation or inference of trans-
formation rules from concrete examples [13, 22, 5]. In comparison to our work,
these approaches usually require a manual adaption of the inferred rule in order
to make it applicable to more models than the example it was derived from.

There are also approaches to define a specific transformation language man-
ually, such as JTL [6] or the language for Java patterns presented in [2]. The
manual definition of comparable languages for DSLs would be very tedious.
Therefore, the generation of transformation languages that we present as an
outlook in Section 5 can substantially save efforts for language developers.

Existing approaches to the generation of transformation languages that re-
flect the concrete syntax of the transformed models are currently limited to
graphical, metamodel-based languages. The most mature approaches we are cur-
rently aware of are the ones by R. Grønmo [8] and by Kühne et al. [14]. These
approaches however do not consider the concrete syntax of textual languages de-
fined in grammars, and the generation of the languages is not fully automated.

Models in textual languages can also be transformed by term rewriting sys-
tems. E. Visser presents how term replacements can be written using the concrete
syntax of the underlying language in [23]. Term rewriting rules however are usu-
ally limited to a connected (and typically small) subgraph of the target syntax
tree, whereas in model transformations we often have to deal with rules that
operate on objects distributed all over the syntax tree or even different input
files.

Another example where the same language is used to describe expressions
and transformations is mathematics and maybe proof systems close to math-
ematics [4, 16]. Mathematical equations can be understood as transformations,
and indeed the success of mathematics to a large extent comes from a precisely
defined, composable set of transformation rules (equalities) that allow to ma-
nipulate and simplify mathematical formulas in almost any form. Mathematics
however does not need explicit references to the abstract syntax.

In conclusion, model transformations for textual languages could be substan-
tially improved in terms of reflecting the concrete syntax of the underlying DSL,
and — as far as can be seen from existing work — such transformation languages
can to a wide extent be generated from the original modeling languages.

4 Syntactic Form of Transformation Rules

We now introduce the transformation rule language for hierarchical automata.
This introduction is informal in the sense that it points out the style of trans-
formation rules and what happens at execution time of these rules. We are not
going to completely define their syntax and their semantics, but concentrate
on the presentation style of transformation rules. For the understanding of this
section, we assume that the reader has a basic knowledge of model transforma-
tions, especially model transformations based on graph transformations, and the
application of transformation rules to host models as discussed in [1].

We pick up the example of forwarding transitions in automata to nested
initial states (cf. Section 2). Figure 3 shows two possible notations of a transfor-
mation rule for the forwarding of a single transition, given in concrete syntax2.

In our approach, which is shown in the upper half of Figure 3, a transforma-
tion rule consists of an integrated notation of its LHS and its RHS. In comparison
to separate notations, as shown in the lower half of Figure 3, this has two major
advantages: The first one is reduced redundancy between the LHS and the RHS,
especially if we have a lot of elements that are not changed by the transforma-
tion and occur on both sides of the rule. The second one is the possibility to
determine object identity between the LHS and the RHS: If an object does not
have a name (such as the transition in lines 8 and 16 in the lower part of the
figure), or if the name of an object is changed by the transformation rule, we
have to introduce additional object IDs, such as $T in the example, for defining
identical objects on the LHS and RHS.

In our example there are two differences between the LHS and the RHS. In
the integrated notation, differences are indicated by a replacement inside the
rule, denoted between square brackets [[...]] and the replacement operator
:-. The first difference is defined in line 6: The state identified by $inner is
not initial on the RHS, indicated by the removal of the modifier <<[[initial
:-]]>>. The second one occurs in line 9. The name of the target state of the
transition modeled here is $outer on the LHS, but $inner on the RHS.

These differences describe exactly the modifications that are necessary to
transform the LHS from our initial example (cf. Figure 1) into the RHS, i.e. into
the automaton that has no nested initial states.

In contrast to our initial example from Figure 1, we do not have to use con-
crete identifiers of states or transition labels in the transformation rule. Instead
of identifiers, we can use schema variables. In our transformation rule language,
identifiers are interpreted as schema variables if and only if they start with a
dollar sign. Thus, we can unambiguously distinguish between schema variables
that must be matched when the transformation is executed, and fixed identifiers.
Please note that schema variables cannot only be matched against identfiers, but
against arbitrary syntactical elements. For example, $event in Figure 3 could
also be matched against complex labels with events and preconditions.

2 This is a simplified rule; actually a semantics preserving transformation would have
to forward all incoming transitions to all nested initial states.

Transformation rule in concrete syntax

1 state $source;

2

3 state $outer {

4 state $inner << [[initial :-]] >>;

5 }

6

7 $source -$event> [[$outer :- $inner]];

Transformation rule in concrete syntax, separated LHS and RHS

1 match {

2 state $source;

3

4 state $outer {

5 state $inner << initial >>;

6 }

7

8 Transition $T [[$source -$event> $outer;]]

9 } replace {

10 state $source;

11

12 state $outer {

13 state $inner << initial >>;

14 }

15

16 Transition $T [[$source -$event> $inner;]]

17 }

Fig. 3. Transformation rule for transition forwarding in concrete syntax with integrated
notation of LHS and RHS (top) or separated notation (bottom)

When a transformation is executed, the transformation engine attempts to
find a match for the pattern specified on the LHS. A schema variable may occur
several times in a pattern, such as $source in lines 1 and 7. In this case, all
matches against this schema variable in the host model must have the same
value3. Elements that have a fixed identifier are matched against the element
with exactly this identifier in the host model.

Once a match for the LHS is found, it is replaced by the RHS of the trans-
formation rule. As our work does not focus on the definition of another trans-
formation engine, but we need such an engine to demonstrate our approach, we

3 This part of the matching is currently limited to a flat, global namespace. We are
going to to apply this concept to more complex namespaces in future work.

have chosen a fairly standard way of interpreting the transformation as inspired
by graph grammar tools like [21, 20, 1] in the first attempt.

The graph matching approach allows (but not enforces) a match to have
properties that are not given in the rule. For example, the initial state given in
line 4 of the example may be mapped to a state that is both initial and final.

Our language also provides mechanisms to combine concrete syntax patterns
with abstract syntax, thus allowing to define objects with abstract types or
additional constraints referring to the abstract syntax. Moreover, it includes
advanced concepts for pattern matching in attributed graphs such as sets of
nodes or negative application conditions.

5 Conclusions, Current State and Future Work

In the previous section we gave an example of a transformation rule in concrete
syntax, which is an instance of a domain specific transformation language. The
systematic derivation of such transformation languages from DSLs as well as
further improvements of our transformation engine are subject to our ongoing
work in this area.

Our goal is to generate transformation languages from the grammars of DSLs.
A configuration of the generation process (such as the specification of the variable
prefix described above) would be acceptable, but the development of a transfor-
mation language in concrete syntax should not require writing source code in a
programming language or modifying grammars manually.

We use the MontiCore tool set and framework for the language definition
and all generation processes. MontiCore [9] allows for the integrated definition
of the concrete and the abstract syntax of DSLs in a grammar format similar
to EBNF. It also provides mechanisms to efficiently process models in these
DSLs, for instance static analyses, code generation, or model transformations
written in Java. Future versions of MontiCore will also provide support of model
transformations as presented in this paper.

Figure 4 depicts the process of modeling and transformation language de-
velopment as well as the usage of these languages according to our approach. A
language developer defines the syntax of a DSL in a context-free grammar. From
this definition, the rule language generator can automatically derive a grammar
of a transformation language and a matching code generator, where the code
generator also includes a language independent runtime environment. A domain
expert can now not only define models in the DSL, but also implement model
transformations in the generated language, which can be processed by the trans-
formation language parser and code generator.

As a proof of concept we are currently working on more complex transfor-
mations, including the complete process of flattening UML state machines by
transformations in concrete syntax. In order to develop more complex transfor-
mations in a manageable way, we are also working on a control flow language,
which is syntactically and semantically close to a subset of Java and includes
transformation rules as statements or expressions.

<<instanceof>>

:ASTAutomatona:ASTAutomaton

<<instanceof>>

RuleLanguage-
Generator

:ASTAutomatona':ASTAutomaton

language
developer

domain
expert

<<generates>>

<<generates>>

<<gen>>
AutomatonTF.mc

<<handcoded>>
Automaton.mc

<<handcoded>>
ForwardTo-
Initial.mtr

<<gen/RE>>
CodeGen

DSL
definition

Transformation
language definition

Fig. 4. Roles, documents and components in the transformation process

The current prototype can already execute a subset of the rules required to
flatten UML state machines. We plan to come up with a more stable version that
includes the control flow language and fully enables the transformations of state
machines as well as some other languages in an upcoming version of MontiCore,
which we plan to release by the end of this year.

References

1. Agrawal, A., Karsai, G., Shi, F.: A UML-based graph transformation approach
for implementing domain-specific model transformations. International Journal on
Software and Systems Modeling (2003)

2. Appeltauer, M., Kniesel, G.: Towards concrete syntax patterns for logic-based
transformation rules. Electron. Notes Theor. Comput. Sci. 219, 113–132 (November
2008)

3. Baar, T., Whittle, J.: On the Usage of Concrete Syntax in Model Transforma-
tion Rules. In: Proc. of Sixth International Andrei Ershov Memorial Conference,
Perspectives of System Informatics (PSI). pp. 84–97. Lecture Notes in Computer
Science (2006)

4. Bauer, F.L., Ehler, H., Horsch, A., Möller, B., Partsch, H., Paukner, O., Pepper, P.:
The Munich Project CIP, Volume II: The Program Transformation System CIP-S,
Lecture Notes in Computer Science, vol. 292. Springer (1987)

5. Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel, G., Rets-
chitzegger, W., Schwinger, W.: An Example Is Worth a Thousand Words: Com-
posite Operation Modeling By-Example. In: Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems. pp. 271–285.
MODELS ’09, Springer-Verlag, Berlin, Heidelberg (2009)

6. Cohen, T., Gil, J.Y., Maman, I.: Jtl: the java tools language. SIGPLAN Not. 41,
89–108 (October 2006)

7. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–645 (2006)

8. Grønmo, R.: Using Concrete Syntax in Graph-based Model Transformations. Ph.D.
thesis, Dept. of Informatics, University of Oslo (2009)

9. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: Monticore: a frame-
work for the development of textual domain specific languages. In: 30th Interna-
tional Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May
10-18, 2008, Companion Volume. pp. 925–926 (2008)

10. Object Management Group: Object Constraint Language Version 2.0 (OMG Stan-
dard 2006-05-01) (2006),
http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf

11. Object Management Group: Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification (2008-04-03) (April 2008),
http://www.omg.org/spec/QVT/1.0/

12. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Satellite Events at the
MoDELS 2005 Conference. Lecture Notes in Computer Science (LNCS), vol. 3844.
Springer (2005), http://dx.doi.org/10.1007/11663430 14

13. Kindler, E., Wagner, R.: Triple Graph Grammars: Concepts, Exten-
sions, Implementations, and Application Scenarios. Tech. Rep. tr-ri-07-
284, Software Engineering Group, Department of Computer Science, Uni-
versity of Paderborn (June 2007), http://www.uni-paderborn.de/cs/ag-
schaefer/Veroeffentlichungen/Quellen/Papers/2007/tr-ri-07-284.pdf

14. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.: Explicit trans-
formation modeling. In: Ghosh, S. (ed.) Models in Software Engineering, Lecture
Notes in Computer Science, vol. 6002, pp. 240–255. Springer Berlin / Heidelberg
(2010)

15. Nagl, M.: Graph-Grammatiken: Theorie, Anwendungen, Implementierung. Vieweg
(1979)

16. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. Springer (2002)

17. Philipps, J., Rumpe, B.: Refactoring of Programs and Specifications. In: Kilov, H.,
Baclawski, K. (eds.) Practical foundations of business and system specifications,
pp. 281–297. Kluwer Academic Publishers (2003)

18. Rumpe, B.: Modellierung mit UML. Springer (2004)
19. Schmidt, M.: Transformations of UML 2 Models using Concrete Syn-

tax Patterns. In: RISE 2006 International Workshop on Rapid Integra-
tion of Software Engineering techniques. Lecture Notes in Computer Sci-
ence (LNCS), vol. 4401, pp. 130–143. Springer Verlag, Heidelberg (2006),
http://www.springerlink.com/content/836phwk78782v614/

20. Schürr, A.: Progres: A vhl-language based on graph grammars. In: Graph-
Grammars and Their Application to Computer Science (LNCS 532). pp. 641–659
(1990)

21. Taentzer, G.: Agg: A graph transformation environment for modeling and val-
idation of software. In: Applications of Graph Transformations with Industrial
Relevance. pp. 446–453 (2004), http://dx.doi.org/10.1007/b98116

22. Varró, D.: Model Transformation by Example. In: Proc. 9th Interna-
tional Conference on Model Driven Engineering Languages and Sys-
tems (MODELS 2006). LNCS, Springer, Genova (October 2006),
http://www.springerlink.com/content/a34jhvh4j01l7514/

23. Visser, E.: Meta-Programming with Concrete Object Syntax. In: Batory, D., Con-
sel, C., Taha, W. (eds.) Generative Programming and Component Engineering
(GPCE’02). Lecture Notes in Computer Science, vol. 2487, pp. 299–315. Springer-
Verlag, Pittsburgh, PA, USA (October 2002)

Beyond MOF Constraints – Multiple Constraint Set
Metamodelling for Lifecycle Management

Keith Duddy keith.duddy@qut.edu.au

Jörg Kiegeland joerg.kiegeland@qut.edu.au

Queensland University of Technology, 2 George St, Brisbane, 4000, Australia,

Abstract. The management of models over time in many domains requires different con-
straints to apply to some parts of the model as it evolves. Using EMF and its meta-language
Ecore, the development of model management code and tools usually relies on the meta-
model having some constraints, such as attribute and reference cardinalities and change-
ability, set in the least constrained way that any model user will require. Stronger versions
of these constraints can then be enforced in code, or by attaching additional constraint
expressions, and their evaluations engines, to the generated model code. We propose a
mechanism that allows for variations to the constraining meta-attributes of metamodels,
to allow enforcement of different constraints at different lifecycle stages of a model. We
then discuss the implementation choices within EMF to support the validation of a state-
specific metamodel on model graphs when changing states, as well as the enforcement of
state-specific constraints when executing model change operations.

1 Introduction

The Eclipse Modelling Framework (EMF) is the most commonly used implementation of
the Essential MOF specification [Object Management Group, 2008]. Metamodels specified
in the EMF Ecore language result in generated code to support instances of a modelled
language or domain, in which the instances must strictly conform to constraints inherent in
the metamodel, such as cardinalities and attribute changeability. However, the models of
many domains require that these constraints change over time, as the objects modelled go
through lifecycle stages, which necessitates the specification of metamodels that contain
the weakest constraints required at any stage of a model’s life cycle. This requires the
addition of “business rules” within the supporting repository and tools to enforce tighter
constraints than the metamodel does, or constrain the user interface from allowing a user
to put a model into certain states at different lifecycle stages.

A related problem that we have encountered is a situation where there is a published
normative metamodel, which represents some idealised set of constraints that apply to
models which are already constructed and in use. In the first instance, there is always
a stage of building a model, at which point the instance cannot possibly conform to the
metamodel until a set of relevant instances and values are created and linked together.
Standard metamodels may be too restrictive to reflect the reality of the domain, and only
express the constraints of an idealised state of the model, which may only be achieved
after some process. In this case, the tools need to selectively enforce the metamodel con-
straints, or rely on a a parallel implementation of a more relaxed constraint model, thereby
compromising model interoperability.

Our approach to dealing with these situations is to allow for the creation of variations of
a metamodel in which the classes, attributes and references are all the same, but their
constraining meta-attributes are associated with a named lifecycle stage for instances. We

represent the lifecycle stages as a state-machine specification, with each stage represented
by a state.

Using Ecore we represent variations as annotations to the meta-attributes which are la-
belled with the name of the state in which the variation should be enforced. Two special
variations, which may or may not be represented in the state machine are created first: the
“normative” and “relaxed” variations. The normative metamodel is usually received from
a published standard. The relaxed metamodel is generated using model transformation to
alter the meta-attributes under consideration. The relaxed metamodel is then augmented
using the Ecore model annotation mechanism to embed the normative meta-attributes val-
ues as annotations. Following this, variations for each of the states representing lifecycle
stages are then embedded as additional annotations.

We then associate a state machine representing the lifecycle stages with the each “model
instance” (actually a graph of instances connected by containment references), and gener-
ate code which looks up the current state to determine which constraints to enforce when
models are validated or have change operations executed on them.

The next section provides a context for the approach, and describes a metamodel example
which motivates it. The details of the implementation are explained in Section 3. Future
work is discussed in Section 4, and related work is discussed in Section 5. The conclusion
is given in Section 6.

2 Motivating Context and Metamodel Example

The context for this work is in the management of model repositories created from meta-
models of data. We have a tool set which generates Web service accessible repositories of
data sets from Eore models called Repository as a Service (RaaS). The RaaS tools generate
only as many Web service operations in a repository’s WSDL interface (or URI mappings
in the REST interface) as needed to transfer coherent sub-graphs of objects which are con-
nected through containment references. The design rationale and initial implementation
are documented in [Duddy et al., 2010]. Currently the tools are being extended to gener-
ate customised interface support for multiple stakeholders, who have different constraints
depending on their role and the lifecycle stage of a shared model. This paper simplifies the
problem under consideration to a single user over many lifecycle states of the model. We
restrict the discussion of constraints for this paper to the enforcement of lower bounds on
attribute and reference cardinalities, and the changeability meta-attribute.

The initial use case for repository generation was for storing service descriptions as specified
by the MOF metamodel of the Unified Service Description Language (USDL)1 [Cardoso et al., 2009],
which is a large metadata set for describing human- and computer-provided services. The
USDL covers several aspects of service description, and includes participant, technical,
legal, pricing and service level modules. A more robust implementation of the RaaS tools
used to create a USDL repository is described in the [Barros & Oberle, 2011]. The ex-
ample that will be used in this paper is that of a Price Plan for a Service. See Figure 1
for a subset of the metamodel as it appears in the USDL specification. We require dif-
fering constraints when the service description transitions between three lifecycle stages:
Preparation for Offer, Offered and Deprecated. The state machine showing the transitions
allowed between these stages is shown in Figure 2.

Currently we are also considering the interactions of several stakeholders in the building
and construction industry through a model repository containing Building Information

1 Language specification can be obtained at http://internet-of-services.com, last accessed 28 July 20111

Fig. 1. The Normative USDL Price Plan metamodel

Preparation
for Offer

Offered Deprecated

Fig. 2. The Simplifed Lifecycle Stages of a USDL Service Description

Models (BIM) [Succar, 2009], [Steel et al., 2010]. Similar variations to the constraints on
BIM models occur over their lifetime, and many of these are best described as variations
to the metamodel. The lifecycle is complex, and includes the design, engineering, quantity
surveying, construction and maintenance of buildings modelled as BIMs.

The Price module of USDL describes a very general framework for modeling price plans
for services. Its detailed design is described in [Kiemes & Oberle, 2010], and in the USDL
specifications. In the life cycle of a service description the following requirements on prices
are applicable in the three states described by our simplified lifecycle state machine (Figure
2):

Preparation for Offer There must be no lower bounds on any attributes or references.
All attributes and references must be changeable.

Offer All lower bounds must be enforced as in the normative metamodel, except that the
lower bound for taxes must be 1, as all prices are subject to VAT in the marketplace.
All references except taxes and adjustedComponents must not be changeable – which
allows taxes to be applied according to legislation, and discounts to be introduced.
Only the name attributes can change when in this state (although these are also not
expected to change). All other attributes must be fixed as they represent the offered
service price plan, which is required to be unchanged during the offer period.

Deprecated All lower bounds must be enforced as in the normative metamodel. All
attributes and reference must not be changeable.

Fig. 3. The Relaxed variation of the Price Plan metamodel

Note that due to a lack of standard graphical representations for the Ecore changeable
meta-attribute, we use a clear box next to an attribute to represent true and a black box
to represent false. For references we use an open arrow for true and a black arrow for false.
This allows for easy visual differentiation when comparing metamodel variants, as can be
seen when comparing Figures 3 and 4.

Fig. 4. The Offered variation of the Price Plan metamodel

The requirements for the Preparation for Offer state represent a general description of
what we call the“relaxed” metamodel. See Figure 3. The idea of relaxing constraints by
creating a metamodel variation was introduced by Ramos et. al. [Ramos et al., 2007] to
be used in their work on “model snippets” to facilitate pattern matching. Although the
delayed validation paradigm of MOF/EMF implies the existence of the relaxed metamodel,
the tool chain that we use in RaaS includes the Teneo relational database mapping, which
forces a model type check upon save. Therefore we need to explicitly create the relaxed
metamodel for use with the repository persistence layer, otherwise partially completed
Price models would not be able to be saved into the repository, which is intended as a
place for models to be stored for collaborative editing.

The Offer state (Figure 4) essentially re-introduces all the lower bound constraints of the
original normative metamodel from the USDL standard – however there some small vari-
ations, which represent trading conditions for service offered in our example marketplace.
However, in this state almost all attributes are unchangeable.

As one might expect, the constraints in the Deprecated state are designed to prevent
changes, and preserve the Price model as it was when offered to represent a historical
record of an advertised service offer (Figure 5).

0

Fig. 5. The Deprecated variation of the Price Plan metamodel

3 Implementation of Variant Constraint Enforcement

The conceptual basis of the approach is that the contents of a repository are modelled
as a set of structurally similar metamodels with variations in their meta-attributes which
reflect different constraints at different times in a model’s lifecycle.

The process by which we achieve a useful set of metamodel variants, and then use them
to construct a model repository with state-based constraint enforcement is as follows:

Generate a relaxed version of a standard metamodel. We do this using model trans-
formation in our Tefkat language and engine [Lawley & Steel, 2005]. For our purposes the
relaxation of the metamodel is defined as: set all attribute and reference lowerBound meta-
attributes to zero, and all of their changeability meta-attributes to true. We also introduce
a simple string-valued attribute in the root class in the relaxed metamodel, RaaSstate,
to represent the lifecycle state. This attribute will be set by the state machine associated
with the instance by the generated code.

Embed a set of annotations into the relaxed metamodel The convention in the EMF
tool community for augmenting metamodels for code generation is the use of annotations,
which are simply groups of string/string pairs which can be attached to any model element.
As they are then embedded into the original metamodel, they can be used via reflection
at run time to do constraint checking without additional machinery.

During the construction of the relaxed metamodel, where the new model differs from the
normative model, we store the variation as an annotation of the following form:

<eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="2869" name="name"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString">

<eAnnotations xmi:id="2533" source="lowerBounded">

<details xmi:id="6135" key="Normative" value="1"/>

</eAnnotations>

</eStructuralFeatures>

The example above shows that the name attribute of PricePlan now has the (relaxed) de-
fault lowerBound of zero, and that in the normative version the attribute had a lowerBound
of one.

Edit the normative metamodel to reflect different constraints. The domain expert
that wishes to vary the constraints for each lifecycle state now edits the normative model
(or the relaxed model if that is closer to the desired state), and provides a metamodel
reflecting the constraints that apply in additional states of a model instance. The tools
then apply a diff transformation against the relaxed metamodel which adds additional
annotations for embedding that apply to that state. We have a number of diff and patch
library transformations written in Tefkat to perform these tasks [Hearnden, 2007]. These
are the additional annotations we generated for the lowerBounded annotation group for
the name attribute of PricePlan, as reflected in the metamodels from Figures 3, 4 and 5:

<details xmi:id="6136" key="InPreparation" value="0"/>

<details xmi:id="6137" key="Offered" value="1"/>

<details xmi:id="6138" key="Deprecated" value="1"/>

Alternatively the domain expert can simply edit the annotations to the relaxed metamodel
by copying the Normative value details already embedded there. The choice here depends
on the familiarity of users with particular tools.

Generate code for constraint checking There are many approaches possible, of which
we outline the two most appealing here:

1. Generate constraints in an existing constraint language, such as OCL. An OCL con-
straint can be directly embedded into the Ecore model as annotations to be used by
an OCL constraint checking engine. These constraints can be validated both in editors
and in the generated Java EMF instances. Here is the example for checking that the
name attribute is present (and non-null):

invariant lowerBoundedInvariant1:

self.lifecycleStage = ’Offered’ or

self.lifecycleStage = ’Deprecated’

implies not self.name.oclIsUndefined() and self.name <> ’’;

In later versions of EMF, OCL constraints can also be used to generate Java code
rather than executing a constraint checker. This can create very efficient constraint
checking implementations. However Eclipes’s constraint checking framework does not
currently not support triggering validation when setter methods are invoked. Another
drawback is that OCL is not capable of accessing the meta-class for an instance so
our constraint annotations must be duplicated in the OCL constraints. Therefore we
decided to use the following approach.

2. Using the EMF’s generatorAdapters extension point we embed a generic reflective
piece of code which queries the annotations in the metamodel of the object on which
the setter is called. The code produces a decision on whether to allow a setter to be
executed based on the state of the instance and what is effectively a lookup table in the
annotations of its class definition. The presence of our annotations in the metamodel
at generation time would cause this code to be embedded. In this way we can extend
the approach to enforce additional constraints which vary by lifecycle state during
method calls.

The first approach will be more efficient, as the code can execute directly, requiring only the
lookup of the current state, and where the cardinalities and changeability are in line with
EMF defaults, no guard code will need to be executed. The second is more dynamic, and
more maintainable, and allows for information about additional states to be inserted into
the annotations at runtime. It will, however, suffer from a slight performance disadvantage
due to reflective calls and generic constraint logic.

4 Future Work

Attentive readers will have noted that the state of a service description can transition from
Preparation for Offer or from Offered to the Deprecated state. The latter transition
seems to contradict the statement that deprecated service offers are preserved for the his-
torical record, as they would become freely editable again if returned to the Preparation
for Offer state. In fact transitions between states in the fully fledged lifecycle implemen-
tation will include the ability to clone models for storage as a record between any two
states, and so both transitions from the Offered state in the fully functional lifecycle
state machine would be marked to store historical copies of the model.

A related matter which is also being addressed is the potential contradiction between
required lowerBound multiplicities in the lifecycle state after a transition and the inability
in the current state to change the very attributes and references which are required to
have additional values. We are investigating several approaches, both of which start by
performing an analysis using Tefkat rules on the satisfiability of the constraints in each state
from its preceding states. The first approach would report the unsatisfiable constraints to
the domain modeller, and require corrections to the metamodel variants. Other approaches
include the insertion of an intermediate state with relaxed constraints to allow the model
to reach conformance to the next state, or a tool based approach which prompts modellers
to provide a minimum set of values to meet the constraints in the new state via an input
form or directed editor.

5 Related Work

The techniques for transformation-driven metamodel and model co-evolution of Wachsmuth
[Wachsmuth, 2007] are similar to our approach for generating the relaxed metamodel from
our normative metamodel, however we preserve all of the class and reference structure of
the model, and change only meta-attributes. The implementation for OCL in the EMF
framework by Akehust and Patrascoiu [Akehurst & Patrascoiu, 2004] uses the same basic
approach as we use for model validation, although their design is for single-state invariant
constraint enforcement. We essentially extend this to support the enforcement of invariants
that change with the state of the model.

Czarnecki and various co-authors have been modelling variation using feature models for
the purposes of creating hardware and software product families. This approach is also
extended to deal with cardinalities in [Czarnecki et al., 2005], however, it is assumed that
a single instance will be instantiated that falls within the cardinalities specified, and does
not vary over time. They unify this approach with metamodelling in [Bak et al., 2010], but
the focus is still on product development of multiple instances representing one variation
at a time, rather than managing a single data set which has different constraints over
time. They document the state of the art in product family variability as at 2010 in
[She et al., 2010].

6 Conclusion

We have proposed a mechanism of metamodel variation coupled with a lifecycle state ma-
chine which facilitates the generation of constraint checking code in the EMF framework.
The approach is designed to allow the improved use of normative specifications which con-
tain metamodels, but which fail to address all of the issues to do with changing constraints
over the lifetime of a set of independently evolving model instances. We are augmenting
our model repository to tailor the constraints on the models it stores to assist users in
keeping their models well-formed during lifecycle changes, by performing extra model vali-
dation and modification checking. This approach will be expanded to include consideration
of multi-stakeholder modelling processes, such as those found in the service broking and
building industries.

References

[Akehurst & Patrascoiu, 2004] Akehurst, David H., & Octavian Patrascoiu 2004. OCL 2.0
- Implementing the Standard for Multiple Metamodels. Electr. Notes Theor. Comput.
Sci., 102:21–41.

[Bak et al., 2010] Bak, Kacper, Krzysztof Czarnecki, & Andrzej Wasowski 2010. Feature
and Meta-Models in Clafer: Mixed, Specialized, and Coupled. In Malloy, Brian A., Steffen
Staab, & Mark van den Brand (eds), SLE, volume 6563 of Lecture Notes in Computer
Science, pages 102–122. Springer.

[Barros & Oberle, 2011] Barros, Alistair, & Daniel Oberle (eds) 2011. Handbook of Service
Description – USDL and its Methods. Springer Verlag, Berlin, Germany, 1st edition.

[Cardoso et al., 2009] Cardoso, Jorge, Matthias Winkler, & Konrad Voigt 2009. A Service
Description Language for the Internet of Services. In Proceedings First International
Symposium on Services Science (ISSS’09), pages 39–48, Berlin, Germany. Logos Verlag.

[Czarnecki et al., 2005] Czarnecki, Krzysztof, Simon Helsen, & Ulrich W. Eisenecker 2005.
Formalizing cardinality-based feature models and their specialization. Software Process:
Improvement and Practice, 10(1):7–29.

[Duddy et al., 2010] Duddy, Keith, Michael Henderson, Alejandro Metke-Jimenez, & Jim
Steel 2010. Design of a model-generated repository as a service for USDL. In Proceed-
ings of the 12th International Conference on Information Integration and Web-based
Applications & Services, iiWAS ’10, pages 707–713, New York, NY, USA. ACM.

[Hearnden, 2007] Hearnden, David 2007. Deltaware: Incremental Change Propagation for
Automating Software Evolution in the Model-Driven Architecture. PhD thesis, Univer-
sity of Queensland.

[Kiemes & Oberle, 2010] Kiemes, Tom, & Daniel Oberle 2010. Generic Modeling and
Management of Price Plans in the Internet of Services. In Fähnrich, Klaus-Peter, &
Bogdan Franczyk (eds), GI Jahrestagung (1), volume 175 of LNI, pages 533–538. GI.

[Lawley & Steel, 2005] Lawley, Michael, & Jim Steel 2005. Practical Declarative Model
Transformation with Tefkat. In Bruel, Jean-Michel (ed), Satellite Events at the MoDELS
2005 Conference, Revised Selected Papers, volume 3844 of LNCS, pages 139–150, Berlin,
Germany. Springer Verlag.

[Object Management Group, 2008] Object Management Group 2008. Meta Object Facil-
ity (MOF) Core Specification Version 2.4. OMG Document No. formal/2008-12-10.

[Ramos et al., 2007] Ramos, Rodrigo, Olivier Barais, & Jean-Marc Jézéquel 2007. Match-
ing Model-Snippets. In Engels, Gregor, Bill Opdyke, Douglas Schmidt, & Frank Weil
(eds), Model Driven Engineering Languages and Systems, volume 4735 of Lecture Notes
in Computer Science, pages 121–135. Springer Verlag, Berlin, Germany.

[She et al., 2010] She, Steven, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, &
Krzysztof Czarnecki 2010. The Variability Model of The Linux Kernel. In Benavides,
David, Don S. Batory, & Paul Grünbacher (eds), VaMoS, volume 37 of ICB-Research
Report, pages 45–51. Universität Duisburg-Essen.

[Steel et al., 2010] Steel, Jim, Robin Drogemuller, & Bianca Toth 2010. Model inter-
operability in building information modelling. Software and Systems Modeling, pages
1–11–11.

[Succar, 2009] Succar, B. 2009. Building information modelling framework: A research and
delivery foundation for industry stakeholders. Automation in Construction, 18(3):357–
375.

[Wachsmuth, 2007] Wachsmuth, Guido 2007. Metamodel Adaptation and Model Co-
adaptation. In Ernst, Erik (ed), ECOOP, volume 4609 of Lecture Notes in Computer
Science, pages 600–624. Springer.

Towards Semantics-Aware Merge Support
in Optimistic Model Versioning?

Petra Brosch2, Uwe Egly1, Sebastian Gabmeyer2, Gerti Kappel2, Martina Seidl3, Hans
Tompits1, Magdalena Widl1, and Manuel Wimmer2

1 Institute for Information Systems, Vienna University of Technology, Austria
{uwe,tompits,widl}@kr.tuwien.ac.at

2 Business Informatics Group, Vienna University of Technology, Austria
{lastname}@big.tuwien.ac.at

3 Institute of Formal Models and Verification, Johannes Kepler University, Austria
martina.seidl@jku.at

Abstract. Current optimistic model versioning systems, which are indispensable
to coordinate the collaboration within teams, are able to detect several kinds of
conflicts between two concurrently modified versions of one model. These systems
support the detection of syntactical problems such as contradicting changes, viola-
tions of the underlying metamodel, and violations of OCL constraints. However,
violations of the semantics remain unreported. In this paper, we suggest to use
redundant information inherent in models to check if the semantics is violated
during the merge process. In particular, we exploit the information encoded in
state machine diagrams to validate evolving sequence diagrams by means of the
model checker SPIN.

1 Introduction

In model-driven engineering, version control systems (VCS) are an essential tool to
manage the evolution of software models [4]. In this respect, optimistic version control
systems [1] are of particular importance. They provide reliable recovery mechanisms in
case changes have to be undone and support the collaboration of multiple developers.

An optimistic VCS stores the artifacts under development in a central repository,
which may be accessed by all team members at any time. A typical interaction with the
repository starts when a developer checks out the most recent version of the model under
development. The developer then performs the desired changes on a local copy. Upon
completion, the developer checks the modified local version back into the repository. If
the performed changes do not interfere with the concurrently introduced modifications
of another developer, the merge is straightforward and may be computed automatically.
Otherwise, a merge conflict [4] is at hand and the divergent versions need to be merged

? This work was partially funded by the Austrian Federal Ministry of Transport, Innovation, and
Technology and the Austrian Research Promotion Agency under grant FIT-IT-819584, by the
Vienna Science and Technology Fund (WWTF) under grant ICT10-018, by the fFORTE WIT
Program of the Vienna University of Technology and the Austrian Federal Ministry of Science
and Research, and by the Austrian Science Fund (FWF) under grants P21698 and S11409-N23.

OffOff IdleIdle

Preparing CoffeePreparing Coffee Preparing TeaPreparing Tea

turnOn

turnOff

prepareCoffee

coffeeComplete

prepareTea

teaComplete

Fig. 1: State machine diagram for the class CoffeeMachine (CM).

manually. Without adequate tool support, the merged version may result in a syntactically
and/or semantically inconsistent version, even though both versions were consistent prior
to the merge. Obviously, it is of paramount importance to detect and resolve conflicts as
soon as possible to prevent their propagation through multiple development cycles.

Among the many possible merge conflicts [1], the most common are contradicting
changes. Given two developers working on the same model, this conflict may emerge if
both developers commit their changes and either (a) their changes may not be applied
in combination (i.e., delete/update), or (b) their changes are not commutable (i.e., up-
date/update). In the latter case, the different ordering of the changes results in different
models. In such a situation, often user interaction is required to resolve the conflict. Al-
ternatively, a predefined heuristic-based merge strategy may be applied to automatically
generate consolidated, syntactically correct versions. However, it cannot be asserted that
the model is semantically consistent.

Consider the following example, which describes a semantically inconsistent model
caused by an automatic merge of changes. Figure 1 depicts a UML state machine diagram
modeling a coffee machine and the upmost diagram S in Fig. 2 a possible behavior of
the same machine in terms of a sequence diagram. Two software engineers change the
sequence diagram at the same time: one includes the message turnOff (), resulting in
S′, the other adds the message prepareTea(), resulting in S′′. Each change on its own
results in a sequence diagram consistent with the state machine. The next step is to merge
the changes into a new sequence diagram Ŝ using an automatic versioning tool, e.g.,
as the one proposed by Brosch et al. [2]. As the messages of a lifeline are represented
as ordered list, an update/update conflict occurs, because both newly added messages
are stored at the same index of this list. A conceivable merging strategy is to consider
all possible combinations of the two diagrams. This may result in several syntactically
correct diagrams. Figure 2 shows two possibilities, Ŝ1 and Ŝ2: turnOff () can be placed
before or after prepareTea(). However, making tea after turning off the machine does
not make much sense and a modeler would avoid such a solution in a manual merge
process.

At first glance, it might seem necessary to provide additional knowledge, e.g., a
specifically tailored ontology, to support an automatic merge process aware of the
model’s semantics. However, in modeling languages like UML, the required knowledge
is distributed over different types of diagrams. Each diagram type provides a view on
a specific aspect of the described system. Yet, these views overlap in parts, effectively
duplicating certain aspects of the system across different diagrams. For our example, we
may ascertain, that the first merge option, i.e., turnOff () before prepareTea(), turns

turnOn

coffeeComplete
prepareCoffee

u:U cm:CM

S

turnOn

coffeeComplete
prepareCoffee

teaComplete
prepareTea

u:U cm:CM

S′

turnOn

coffeeComplete
prepareCoffee

turnOff

u:U cm:CM

S′′

turnOn

coffeeComplete
prepareCoffee

turnOff

teaComplete
prepareTea

u:U cm:CM

Ŝ1 Ŝk

.

.

.

turnOn

coffeeComplete
prepareCoffee

teaComplete
prepareTea

turnOff

u:U cm:CM

Ŝ2

Fig. 2: Versioning scenario for a sequence diagram.

out to be inconsistent with respect to the state machine diagram, as preparing tea after
turning off the machine is not possible.

In this paper, we thus propose to exploit this redundant information and use the
overlapping parts of the diagrams as gluing points to construct a coherent picture of the
system. In this way, we are able to assert that the modifications performed on a sequence
diagram are consistent with the specification stated in a state machine diagram. For this
purpose, we employ model checking techniques and integrate this approach into the
merging component of the model versioning system AMOR [2].

Starting with a review of related work in Section 2, we proceed to present our
semantics-aware merging approach in Section 3. We then showcase how the above
presented example is solved with our approach in Section 4. Section 5 concludes the
paper with a discussion of future work directions.

2 Related Work

The fields of model versioning and model verification are both related to our work, which
we describe in what follows.

Model Versioning. In the last decade more than a dozen model versioning systems have
been proposed (see [1] for an overview). Many existing model versioning systems take
advantage of the graph-based structure of software models. As a consequence, conflicts
resulting from contradicting changes are more precisely detected, sometimes even
automatically resolved. Since changes are rarely introduced independently of each other,
think of refactorings for example, some approaches analyze the set of composite changes

to recognize the user’s intention, and try to derive suitable resolution strategies when
conflicting versions are checked into the repository [2, 6]. However, the semantic aspects
of models are mostly neglected by current model versioning systems. To the best of our
knowledge, only two approaches consider semantics in the context of model versioning.
The first approach suggests the usage of semantic views, which are constructed by a
manually defined normalization process that removes all duplicate representations of one
and the same concept from the original metamodel [13]. When two divergent versions of
the same base model are checked into the repository, the two versions are normalized
and compared to determine possible conflicts. Although the normalization procedure
integrates a semantic layer into the model versioning process, the actual comparison of
the normalized models is still performed on a syntactic level.

Another elegant technique, which employs diff operators to compare models, is
presented by Maoz et al. [10]. A diff operator diff (m1,m2) expects two models, m1

and m2, as input and outputs a set of so-called diff witnesses, i.e., instances of m1 which
are not instances of m2. For example, two syntactically different models m1 and m2

are semantically equivalent if each instance of m1 is an instance of m2 and vice versa.
While [10] focuses solely on the semantic differencing aspect of model versioning, we
aim to advance to a semantics-aware model merging process that is supported by an
inter-diagram based consistency verification technique.

Model verification. Decoupled from the above sketched research field of model ver-
sioning systems, various works propose the verification of the syntactical consistency
of models, many of which focus on the verification of UML diagrams (e.g. [7, 11]).
The verification process may be enhanced by the addition of semantic information. For
example, Cabot et al. [5] verify the behavioral aspects of UML class diagrams annotated
with so-called operation contracts, which are declarative descriptions of operations spec-
ified as OCL pre- and postconditions. The class diagram and the operation contracts are
thereby transformed into a constraint satisfaction problem, which is solved with respect
to a set of consistency properties expressing, e.g., the applicability or the executability
of an operation. A formal verification technique for UML 2.0 sequence diagrams em-
ploying linear temporal logic (LTL) formulas and the SPIN model checker [8] to reason
about the occurrences of events is introduced by Lima et al. [9]. In contrast to these
single-diagram verification techniques, multi-view approaches assert the consistency
across a set of diagrams. Proponents in this area are, among others, the tools HUGO [14]
and CHARMY [12]. HUGO verifies whether the interactions of a UML collaboration
diagram are in accordance with the corresponding set of state machine diagrams. The
tool automatically translates the state machine diagrams to PROMELA, the input language
of SPIN, and generates so-called “never claims” from the collaboration diagrams. The
generated artifacts form the input for SPIN, which performs the verification. While HUGO
operates on UML diagrams, CHARMY provides a modeling, simulation, and verification
environment for software architectures (SA), which share many commonalities with
UML. SAs describe the static and behavioral structures of systems with component,
state transition, and sequence diagrams. Again, CHARMY translates the modeled artifacts
to PROMELA and calls upon SPIN to either locate deadlocks and unreachable states in
the state machines, or to verify temporal properties of the system. In contrast to the
standalone, snapshot-based verification procedure implemented by CHARMY and HUGO,

our approach integrates the consistency verification procedure into the model versioning
process to enable the semantics-aware merging of models.

3 Semantics-Aware Model Versioning

To detect semantic merge problems as described above, we propose to use a model
checker like SPIN [8] within the merge process. The idea is to generate possible merge
results and to check for each if it is consistent with the behavior defined by the cor-
responding state machine. We first give a short definition of the modeling language
concepts needed, and then introduce our approach in detail. In particular, we consider a
simplified subset of the UML state machine and sequence diagrams.

3.1 Definitions

For our purposes, a software model U consists of a set M of state machines and a
sequence diagram S, defined as follows: A state machine M = (Q,T, τ, v0, A) is a
deterministic finite automaton, where

– Q is a set of states,
– T is a set of transition labels (or possible input symbols),
– τ : Q× T → Q is the transition function,
– q0 ∈ Q is a designated initial state, and
– A ⊆ Q is a set of accepting states.

A sequence diagram S is a tuple (N,L), where N is a set of messages and L is a set
{L1, . . . ,Ln} of lifelines. A lifeline, L, in turn, is a tuple (M,L, tr), where

– M ∈M is a state machine,
– L is a finite sequence (n1, . . . , nm) of elements of N and
– tr : N → T is a bijective function, mapping each message to a transition of the

corresponding state machine.

A model U is consistent iff for each lifeline L = (M,L, tr) of S, there exists a path
(tr(n1), . . . , tr(nm)) in the state machine M , where L = (n1, . . . , nm).

3.2 Versioning Scenarios

Our versioning scenarios involve concurrent modifications on a sequence diagram.
The state machine diagrams remain unchanged. A modification concerns one or more
messages, each being of either of the following three types:

– insert: a message n ∈ N is inserted at any index of a lifeline;
– delete: a message n is removed from a lifeline; and
– update: a message n is replaced by n′ ∈ N different from n.

Concurrent changes may result in different sequence diagrams. It is then up to the
versioning tool to merge these changes into a new version of the diagram, which must
be syntactically correct and consistent with the state machine diagrams.

Merging sequence diagrams is done as follows: For each lifeline, any possible se-
quence of messages originating from both diagrams is syntactically correct, but possibly
inconsistent with the behavior defined in the corresponding state machine diagrams.

diff conf mergeS

S′

S′′

Merge Strategy

Ŝ Translator

M Translator

PROMELA

Arrays

Autom.

SPINSPIN Output
Ŝ

fail

ok

0

1 2

5

3

4

Fig. 3: Workflow of the merging process.

3.3 Semantics-Aware Model Merging

We propose to integrate the model checker SPIN [8] to support the generation of merged
sequences. SPIN is a software verification tool: It takes as input a software abstraction,
or model, encoded in SPIN’s input language PROMELA and relevant properties of the
software model in LTL. SPIN can be run in two modes: In simulation mode, where
the PROMELA model is executed, and in verification mode, where the LTL formula is
checked for satisfiability with respect to the PROMELA model.

For our basic definition of a software model, we propose a simple encoding that
allows to check for the consistency between a sequence diagram and a set of state
machines by running SPIN in simulation mode, which is much faster than verification
mode and sufficient for our purpose. The state machines are encoded as deterministic
finite automata and the sequence diagram as set of arrays containing transition labels of
the respective automata. The verification task in this case is to check if each word (i.e.,
array of transition labels) is accepted by its automaton.

The workflow of the merging process, as depicted in Fig. 3, is as follows:

0. The setM of state machine diagrams is encoded in PROMELA automata. Other than
for sequence diagrams, this encoding is done only once per application scenario.

1. The versioning operations diff (comparison) and conf (conflict detection) are exe-
cuted on the original sequence diagram S and the two modifications S′ and S′′.

2. The versioning operation merge is performed based on the output of Step 1 and a
merge strategy. In order to produce a syntactically correct sequence diagram, the
merge strategy defines conditions on the possible orderings of the merged messages
on a lifeline. A possible strategy is one that orders messages in a first-come, first-
serve manner, or one that allows any possible combination. A strategy may allow
more than one possible sequence diagram as result of the merge. In this case, the
choice is made deterministically.

3. The output of merge, i.e., a syntactically correct sequence diagram Ŝ, is encoded as
set of PROMELA arrays, describing each lifeline as a word from the alphabet of the
respective automaton encoded in Step 0.

4. The PROMELA code is fed into SPIN, which checks if each of the words generated
in Step 3 is accepted by the respective automaton. It returns either a success message
or the state and transition where the verification failed.

5. If the SPIN output does not contain an error message, the current merged sequence
diagram Ŝ and the SPIN output are returned to the user. Otherwise, the procedure
continues at Step 2 with a new merged sequence diagram Ŝ different from the
previous ones.

For the encoding we make use of the following elements of PROMELA [8]:

– active proctype: defines a process behavior that is automatically instantiated
at program start;

– label: identifies a unique control state (we also use the prefix end, which defines
a termination state);

– mtype: a declaration of symbolic names for constant values;
– array: a one-dimensional array of variables (we use arrays of mtype elements to

encode words checked by the automaton);
– if: a selection construct, used to define the structure of the automaton; and
– goto: an unconditional jump to a label, also used to define the structure of the

automaton.

The PROMELA encoding of a state machine is done as follows:

– The state machine is encoded as active proctype that contains all the neces-
sary elements of the state machine.

– Each transition t ∈ T is encoded as an element of mtype. The additional element
acc is added to model transitions to the end state.

– Each q ∈ Q is encoded as a label marking a state of the active proctype. The
additional state end is added.

– The state q0 is placed at the beginning of the respective process in order to be
executed at process initiation.

– τ is encoded as a set of if conditions inside each PROMELA state q: For each t
such that (q, t) is defined by τ , the current symbol of an input sequence (which is, as
described below, the encoding of a lifeline) is compared to t. If the condition holds,
a goto statement jumps to state τ(q0, t).

– Our sequence diagram semantics does not require a lifeline to end with a specific
message, so all states are accepting states. We thus place a transition goto end if
the current symbol equals our additional transition label acc into each state except
the end state.

A lifeline is encoded as array S of mtype. Each field of S with index i contains the
mtype element tr(ei) where ei is the i-th element of the sequence L.

The PROMELA code is executed as simulation. It prints a success message if the
word encoded in the array is accepted. In this case, the lifeline is consistent with the
corresponding state machine. Otherwise it aborts when it hits a transition label that is
undefined in the current state.

We have implemented the outlined approach based on the Eclipse Modeling Frame-
work (EMF)4. In particular, the presented language excerpt of UML has been specified
as an Ecore-based metamodel. The transformations of state machines into PROMELA

4 http://www.eclipse.org/modeling/emf.

automata and sequence diagrams into PROMELA arrays have been implemented as
model-to-text transformations using Xpand5. The implementation is available at http:
//modelevolution.org.

4 Application Scenario

We illustrate our approach using the example from Section 1. First, we translate the state
machine of Fig. 1 by means of the encoding presented in the previous section as follows:

– The state machine is defined as active proctype named Coffeemachine.
– The transition labels of the coffee machine, along with an additional label acc, are

contained in mtype.
– Each state of the coffee machine is represented by a label, such as Off or Idle, and

an end state is added. The start and end states of the coffee machine are summarized
in label Off.

– For each state, all defined transitions are encoded using if and goto statements.
– A counter is added to keep track of the current index of the input word.

Listing 4.1: State machine encoding in PROMELA.
1 mtype = {turnOff,turnOn,prepareCoffee,coffeeComplete,prepareTea,teaComplete,
2 acc};
3

4 a c t i v e proctype Coffeemachine() {
5 byte h = 0;
6 mtype CM[3];
7

8 CM[0] = turnOn; CM[1] = prepareCoffee; CM[2] = coffeeComplete; CM[3] = acc;
9

10 Off:
11 printf("Off\t %e\n", CM[h]);
12 i f
13 :: CM[h] == turnOn -> h++; goto Idle
14 :: CM[h] == acc -> goto end
15 f i ;
16 Idle:
17 printf("Idle\t %e\n", CM[h]);
18 i f
19 :: CM[h] == prepareCoffee -> h++; goto PreparingCoffee
20 :: CM[h] == prepareTea -> h++; goto PreparingTea
21 :: CM[h] == turnOff -> h++; goto Off
22 :: CM[h] == acc -> goto end
23 f i ;
24 PreparingCoffee:
25 printf("PreparingCoffee\t %e\n", CM[h]);
26 i f
27 :: CM[h] == coffeeComplete -> h++; goto Idle
28 :: CM[h] == acc -> goto end
29 f i ;
30 PreparingTea:
31 printf("PreparingTea\t %e\n", CM[h]);
32 i f
33 :: CM[h] == teaComplete -> h++; goto Idle
34 :: CM[h] == acc -> goto end
35 f i ;
36 end:
37 printf("end!\n")
38 }

5 http://www.eclipse.org/modeling/m2t/?project=xpand.

The sequence diagram contains one relevant lifeline, the instance cm of the coffee
machine, which is encoded as array CM of mtype: For each message ni received by cm,
CM[i]= tr(ni). Recall that tr returns an element of the set of transition labels and that
those are encoded as elements of mtype.

The resulting encoding of the state machine with the initial version S of the sequence
diagram is shown in Listing 4.1. It is easy to see that the above code eventually reaches
the end state. Replacing the array CM by the two modified sequence diagrams S′ and
S′′, encoded in the same manner, the code also reaches the end state. However, on the
merged sequence diagram Ŝ1, given in the following, the model checker will give up
when it reaches the Off state trying to match CM[4].
6 mtype CM[7];
7 CM[0] = turnOn; CM[1] = prepareCoffee; CM[2] = coffeeComplete; CM[3] = turnOff;
8 CM[4] = prepareTea; CM[5] = teaComplete; CM[6] = acc;

On the other hand, the second merged sequence diagram Ŝ2, given in the following, is
consistent. Hence, in our merging workflow, Ŝ2 will be returned to the user.
6 mtype CM[7];
7 CM[0] = turnOn; CM[1] = prepareCoffee; CM[2] = coffeeComplete;
8 CM[3] = prepareTea; CM[4] = teaComplete; CM[5] = turnOff; CM[6] = acc;

5 Conclusion and Future Work

In this paper, we proposed to use a model checker to detect semantic merge conflicts
in the context of model versioning. Model checkers are powerful tools used for the
verification of hardware and software. A model checker takes as input a model of a
system and a formal specification of the system and verifies if the former meets the
latter. We applied this technique to check the semantic consistency of an evolving
UML sequence diagram with respect to state machine diagrams that remain unchanged.
When contradicting changes occur, a unique automatic merge is not possible in general.
However, additional information on violations of the model’s semantics allows to identify
invalid solutions. Hence, a more goal-oriented search for a consistent merged version is
supported.

Our first experiments on this approach gave promising results, but for the full
integration into the versioning process several issues have to be considered which we
discuss in the following.
Extension of the Language Features. So far, we considered only a restricted, simplified
subset of the UML metamodel. In this setting, the execution semantics of the considered
diagrams is quite unambiguous. With the introduction of more advanced concepts,
several questions concerning the execution semantics will arise, which are not covered
by the UML standard and need detailed elaboration in order to translate them to the
formalisms supported by the model checker. When including these language features,
we expect to fully exploit the expressiveness of LTL for the needed assertions.
Integration in the Merge Component. We use the information obtained by the model
checker not only to verify the consistency of two diagrams, but to support the merge
process as necessary when models are versioned in an optimistic way. At the moment,
only the fact that the model checker failed to verify the provided encoding is propagated

back to the merge component. We plan to build an analyzer which is able to deduce
constraints from the output of the model checker. These constraints can then be used to
create an alternative merged version.
Visualization of the Conflicts. For reasons of usability, the representation of conflicts is
of paramount importance. In particular, we conjecture that conflicts have to be reported
in the concrete syntax of the modeling language [3]. Therefore, we propose a mechanism
based on UML profiles to include merging information directly into the model. We plan
to extend this mechanism to report semantical problems in the concrete syntax.
Benchmarking. Finally, we need more test cases to evaluate our approach. In particular,
it will be interesting to learn about precision and recall in various merging scenarios as
well as to study scalability with growing model size.

References
1. P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, and M. Wimmer. The Past, Present, and

Future of Model Versioning. In Emerging Technologies for the Evolution and Maintenance of
Software Models. IGI Global, 2011.

2. P. Brosch, G. Kappel, M. Seidl, K. Wieland, M. Wimmer, H. Kargl, and P. Langer. Adaptable
Model Versioning in Action. In Modellierung, volume 161 of LNI, pages 221–236. GI, 2010.

3. P. Brosch, H. Kargl, P. Langer, M. Seidl, K. Wieland, M. Wimmer, and G. Kappel. Conflicts as
First-Class Entities: A UML Profile for Model Versioning. In Models in Software Engineering,
volume 6627 of LNCS, pages 184–193. Springer, 2011.

4. P. Brosch, P. Langer, M. Seidl, K. Wieland, and M. Wimmer. Colex: A Web-based Collabora-
tive Conflict Lexicon. In IWMCP @ TOOLS’10, pages 42–49, 2010.

5. J. Cabot, R. Clarisó, and D. Riera. Verifying UML/OCL Operation Contracts. In 7th Int. Conf.
on Integrated Formal Methods, pages 40–55. Springer, 2009.

6. A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Managing Model Conflicts in Distributed
Development. In 11th Int. Conf. on Model Driven Engineering Languages and Systems,
MoDELS’08, volume 5301 of LNCS, pages 311–325, 2008.

7. A. Egyed. UML/Analyzer: A Tool for the Instant Consistency Checking of UML Models. In
29th Int. Conf. on Software Engineering, pages 793–796. IEEE, 2007.

8. G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley
Professional, 2003.

9. V. Lima, C. Talhi, D. Mouheb, M. Debbabi, L. Wang, and M. Pourzandi. Formal Verification
and Validation of UML 2.0 Sequence Diagrams using Source and Destination of Messages.
ENTCS, 254:143–160, 2009.

10. S. Maoz, J. O. Ringert, and B. Rumpe. A Manifesto for Semantic Model Differencing. In
Models in Software Engineering, volume 6627 of LNCS, pages 194–203. Springer, 2010.

11. T. Mens, R. Van Der Straeten, and M. D’Hondt. Detecting and Resolving Model Incon-
sistencies Using Transformation Dependency Analysis. In 9th Int. Conf. on Model Driven
Engineering Languages and Systems, MoDELS’06, volume 4199 of LNCS, pages 200–214.
Springer, 2006.

12. P. Pelliccione, P. Inverardi, and H. Muccini. CHARMY: A Framework for Designing and
Verifying Architectural Specifications. TSE, 35(3):325–346, 2008.

13. T. Reiter, K. Altmanninger, A. Bergmayr, W. Schwinger, and G. Kotsis. Models in Conflict –
Detection of Semantic Conflicts in Model-based Development. In MDEIS @ ICEIS’07, pages
29–40, 2007.

14. T. Schäfer, A. Knapp, and S. Merz. Model Checking UML State Machines and Collaborations.
ENTCS, 55(3):357–369, 2001.

Domain Specific Language Modeling Facilities

Jean-Philippe Babau and Mickaël Kerboeuf

LISyC, UBO, UEB
{babau,kerboeuf}@univ-brest.fr

Abstract. This paper describes a metamodel called Modif dedicated
to metamodel evolution description. Evolutions are common editing (re-
move, rename and change), refactoring (flatten) and an original hide
operator to apply to Ecore elements. From a Modif model, tools auto-
matically generate the target metamodel and corresponding model mi-
grations. The approach is illustrated on a specific Finite State Machine
metamodel defined as an evolution of existing UML concepts.

1 Introduction

Model Driven Engineering (MDE) proposes an intensive usage of models to
implement Software Engineering principles. To implement a MDE process, de-
signers have to master model definition and model handling.

For modeling activities, a General Purpose Modeling Language, such as
UML [12], provides rich, but large, complex, and non specific, existing mod-
eling concepts. Whereas, a Domain Specific Modeling Language is handier for
specific concerns. In this paper, we focus on Ecore DSML definition using Eclipse
Modeling Framework (EMF) [3].

With regard to the design of DSML, in the same domain, most of them share
many common concepts. They vary only by a limited set of concepts, naming
and structural considerations. For example, we may easily find dozens of Ecore
models of specific Finite State Machine sharing the same concepts more or less.
Thus a new DSML is often an evolution of an existing modeling language.

Introducing a new DSML leads to producing yet another modeling language.
It induces a Babel Tower problem, i.e. a lot of models that are difficult to manage,
and the need to build interoperability bridges between them through model
transformations, called model migrations [13]. To tackle this problem, we need
tools to automate DSML definition and model migrations.

The aim of this paper is to facilitate DSML definition and manipulation
by proposing a metamodel, called Modif, to explicit metamodel evolution. Then,
tools based on Modif encompass metamodel generation from legacy metamodels,
and automatic generation of model migrations between source and target models.

This paper is organized as follows. The next section presents Modif meta-
model and proposed transformations (at meta and model levels). The following
section shows an experiment where we quickly implement a tool to produce spe-
cific FSM models as an evolution of UML models. We finally conclude the paper
and give some perspectives.

2 DSML tooling

2.1 Principles

In our approach, we consider a legacy metamodel (MMs.ecore in figure 1). From
it, the DSML designer has only to produce a model (MMs2MMt.modif) which
gathers modifications that should be applied on MMs to produce the target
metamodel (MMt.ecore). Then, the kermeta [11] transformation modifMM.kmt
automatically produces MMt.ecore from both MMs.ecore and MMs2MMt.modif.

The main idea of Modif is to associate to each Ecore concept of MMs some
classical editing operators (remove, rename and change attributes) to get MMt.
Moreover, some classical refactoring operators are provided (flatten). And, be-
cause remove is sometimes too strong, a specific, and original, hide operator is
proposed for EClasses and EPackages.

Based on MMs2MMt and MMs, another kermeta transformation generateM2M.kmt
generates a model migration Ms2Mt.kmt. It enables transformation of MMs
model to MMt model.

eraseAll.atl	

Ecore.ecore	

Modif.ecore	

MMs2MMt.modif	

MMs.ecore	
 MMt.ecore	

myModel.mms	
 myModel.mmt	

Conforms to

Model flow

Model	

Transforma5o
n	

ModifMM.kmt	

generateM2M.kmt	

Ms2Mt.kmt	

generateNoModif.atl	

Designer modeling activity

Fig. 1. Modif tooling process

Because of the way Modif is processed (detailed below), it may be necessary
to apply the operations many times to obtain the expected target MMt.

Below we now give details of Modif metamodel (see figure 2) and associated
transformations.

2.2 Modif

Fig. 2. graphical view of metamodel Modif.ecore

First, because the goal of Modif is to build a MMt from an existing MMs,
we consider that all the necessary concepts are defined in MMs, so we do not
provide an add operator. We can separate Modif operators into 3 families:

1. Deleting operators: the source concept is not present in the target

2. Refactoring operators: the concept is structured differently in the target

3. Changing operators: the Ecore property of the source concept is modified

Deleting operators are specified when the flags remove or hide are set to value
true. Remove takes precedence over hide: if remove is set to true, then hide is not
considered. In the same way, deleting operators take precedence over modifying
and refactoring operators: if remove or hide are set to true, modifications and
refactoring are not considered.

There follows an explanation of how this data is considered at a metamodel
level, and so how the target MMt is built from MMs and MMs2MMt.modif.

Deleting operators Case remove is true: the source concept disappears and
we apply the following rules:

– for all kinds of concepts: delete contained EAnnotations;
– for an EDataType ED: also remove all EAttributes where EType is ED;
– for an EClass EC: also remove all EStructuralFeatures contained in EC and

all the EReferences ER to EC (ER.EType = EC);
– for an EPackage EP: also remove all the EObjects contained in EP.

The hide operator is trickier. Before giving details of their impact, we intro-
duce the notion of inheritance path and reference path. These are based on the
EClass graph defined by an Ecore metamodel where EClasses are considered as
nodes, and associations (EReference and Inheritance) are considered as edges.

An inheritance path exists between two EClasses EC1 and EC2, if they are
connected by a set of inheritance edges (EC1 explicitly or implicitly inherits
from EC2). An inheritance path is made up of a set of intermediate connected
EClasses. In figure 3, (C,B) is an inheritance path between D and A.

In the same way, a reference path exists between EC1 and EC2, if EC1 and
EC2 are connected by a set of EReference edges (from an instance of EC1, it is
possible to directly or indirectly refer to an instance of EC2). A reference path
is made up of a set of corresponding EReference and intermediate connected
EClasses. In figure 3, (ref B, B, ref F) is a reference path between E and F.

We now give details of the effect of hide on EPackages and EClasses :

– for an EPackage EP: EP is deleted and all contained EObjects that are not
removed and not hidden are moved to EP.container;

– for an EClass EC:
• EC is deleted and all EStructuralFeatures contained in EC and all the

EReferences ER to EC (ER.EType = EC) are also removed;
• an inheritance relationship between EC1 and EC2 is added if a non

empty inheritance path made up of only hidden EClasses exists between
EC1 and EC2;

• an EReference from EC1 to EC2 is added if a non empty reference path
P made up of only hidden EClasses exists from EC1 to EC2 with the
following properties:
∗ its name is a concatenation of the names of all paths’ elements
∗ the containment property is true, if and only if, all the containment

properties of each EReference of P is true
∗ the lowerBound (resp. upperBound) value is equal to the product of

each lowerBound (resp. upperBound) value of each EReference of P.

A hide operator is a weak implementation of a remove operator keeping im-
plicit links between EClasses. To illustrate this point, we apply a hide operator
to EClass B of MMs (see figure 3). This produces the metamodel MMt1 pre-
sented on figure 4. We see that if we remove B, the inheritance relationship
between C and A is preserved, and a reference is added between E and F. In
the two metamodels, an instance of E may be directly or indirectly connected
to 0 or 1 instance of F. We have only illustrated some property preservations.
Transformation semantic is not the subject of this paper and not detailed here.

Fig. 3. graphical view of metamodel
source MMs

Fig. 4. graphical view of metamodel
target MMt1

Refactoring operators Case flatten is true for a given EClass EC:

– all the not deleted EStructuralFeature of EC are duplicated on all EClasses
subEC that EC is a supertype of subEC;

– the inheritance relationship between subEC and EC is removed;
– each EReference ER from an EClass othEC to EC is duplicated to a ERefer-

ence from othEC to subEC, and is renamed (ER.name + ’ ’ + subEC.name);

Case flattenAll is true for a given EClass EC : the same operations as for
flatten are performed but they are applied to all non hidden subEC where a non
inheritance path, even empty, made up of only hidden EClasses between subEC
and EC exists. The attribute flattenAll takes precedence over the attribute flat-
ten: if flattenAll is true, then flatten is not considered.

To illustrate flatten operators, we first set flatten to true for B. It produces
the metamodel MMt2 (see figure 5). Then we set flattenAll to true for B and
we set hide to true for C. It produces the metamodel MMt3 (see figure 6). We
note that an EReference is added from E to keep a relationship with C, resp D.
We also note that it is possible to combine hide and flatten (through flattenAll),
thus reducing the number of transformation operations.

Fig. 5. graphical view of metamodel
target MMt2

Fig. 6. graphical view of metamodel
target MMt3

Changing operators

– newName for a named elementl: by defining a different name newName (resp.
newURIName for EPackage), the concept is renamed by using newName;

– bound for an EStructuralFeature: by defining a different upper newUpper,
resp. lower newLower bound, the target bound is modified;

– changeContainment for an EReference ER: if true, the containment property
of ER in the target is changed to its opposite.

– changeAbstract for an EClass EC: if true, the abstract property of EC in the
target is changed to its opposite.

Changing name is not a neutral operation with regard to the correctness of
the metamodels produced. For EPackages, we do not accept that two transformed
EPackages have the same name. Two EClasses EC1 and EC2 may be transformed
into the same EClass EC3. But, this operation is allowed only if the properties
are the same for EC3 after both transformations from EC1 and from EC2.

2.3 Model migration

When target metamodel MMt is obtained from MMs and MMs2MMt, it is pos-
sible to generate model migration from MMs model to MMt model :

– each instance of not deleted and not abstract EClass is copied to an instance
of corresponding concrete EClass target; the not removed EAttributes and
EReferences are also copied;

– for bound modifications, the current implementation considers only two
cases: from (0..1) or (1..1) to (0..n) or (1..n), and the contrary. For the
first case, we add the single property, if it exists, to the set; for the second
case, we keep only the first element of the set, if it exists;

– when adding an EReference in MMt, we explore the model source graph to
build the correct EReference in the target model;

– a Root class has to be specified in MMs to define the starting point of the
migration transformation.

Changing the EReference containment property is not neutral. Since, an
instance has only one container, adding containment relationship can lead to
an association loss. In the same way, changing an abstract property can lead to
an instance loss. If an EClass becomes abstract, the instances are not copied.

During experiments, generated migration has to be manually adapted to
integrate some domain knowledge. It happens in three cases :

– it is necessary to add some extra properties in MMt: because the proposed
work does not support an add operator, we manually add some extra initial-
ization operations for the concerned instances;

– different properties in MMs are necessary to build one property in MMt:
because Modif considers one-to-one operations, we manually modify property
initialization in the generated transformation;

– only some specific instances of source model are transformed: because Modif
considers generic editing operators, we manually add evaluation on proper-
ties when adding a concept in the target model.

2.4 Modif tools

Modif model appears to be the key of the process. So, we provide some facili-
ties to build it (see figure 1). An ATL [8] transformation generateNoModif.atl,
resp. eraseAll.atl, allows to generate a by-default Modif model. GenerateNoModif
generates a noModifMMs.modif: all the concepts are not removed and not mod-
ified, coupled with ModifMM.kmt, generates a copy of MMs. On the contrary,
eraseAll generates an eraseMMs.modif: all the concepts are removed, coupled
with ModifMM.kmt, generates an empty metamodel. At the model level, using
the by-default noModifMMs model produces a model copier.

The Modif model designer may then use a by-default Modif model to build a
specific one. These tools are particularly useful when manipulating large model-
ing language, such as UML, to build a first Modif model, easy to tune for specific
needs.

3 Experiment

3.1 UML to FSM

To test our approach, for DSML design, we propose to develop a Finite State
Machine metamodel called myFSM as an evolution of UML. UML.ecore is con-
sidered here as the source MMs, myFSM.ecore is considered as the target MMt.
Then, we use an existing tool flattenFSM on myFSM model, which encapsulates
the semantic of FSM by transforming a concurrent and hierarchical FSLM to a
flattened one. The developed tools are illustrated on a model called Train.uml.

3.2 FSM part of UML

First we transform the UML model to a subset of UML corresponding to FSM
part called umlFSM. The target metamodel is based on the UML documentation
for FSM (chapter 15 of UML superstructure documentation). UML2umlFSM.modif
is the result of the following process:

– first, by using eraseAll.atl, remove property is set to true for all concepts;
– then, for all the concepts that are present in the UML documentation for

FSM, remove property is set to false;
– we also keep (remove property to false) some concepts which encapsulate

some useful information for further analysis: Package, PackageableElement,
Event, ReceiveOperationEvent and OpaqueBehavior;

– we hide concepts that are not present in the UML documentation but that
have an inheritance relationship between concepts present in umlFSM :
Type, Classifier, Class, BehavioredClassifier and MessageEvent.

The obtained umlFSM (see figure 7) is close to the UML documentation.
From the UML.ecore used, we note some differences with the UML standard:

– there is no FinalState EClass;
– we add some extra information (Package, PackageableElement, Event, Re-

ceiveOperationEvent and OpaqueBehavior);

Fig. 7. graphical view of metamodel umlFSM.ecore

3.3 umlFSM to myFSM

From umlFSM, myFSM (see figure 8) metamodel is obtained through a chain of
transformations (see figure 9). From umlFSM, we first produce an intermediate
metamodel called iFSM :

– all information is hidden except for that present in myFSM (package is re-
named as Root);

– NamedElement is flattenAll to keep name property for non hidden concepts;

Because myFSM is not exactly a subset of umlFSM, we need to manually
modify iFSM to produce iaFSM and to adapt the corresponding generated mi-
gration:

– both UML state and UML Pseudostate become a state in myFSM; we add
an extra Boolean attribute called ini to differentiate the initial state from
others; set to true for UML Pseudostate only if its kind is equal to initial;

– a string effectName attribute is added to Transition, concatenating guard,
trigger and effect names;

Then from iaFSM, we build myFSM by renaming and removing some unnec-
essary EReferences, added by the first transformation. From the corresponding
generated and adapted migrations, we generate the model and flatten it using a
specific tool flattenFSM.

Only a few days were necessary to develop the models and the migrations,
including the flattenFSM tool. Extra user code is limited and was easy to insert
in the generated transformation.

Fig. 8. graphical view of metamodel myFSM.ecore

3.4 Application

We illustrate the toolchain with a UML model of a toy train. Pushing a button
which enables to turn the train on or off. For the first time, only the lights are
turned on and the train stands still. The second time the button is pushed, the
lights are turned on and the train moves forward. The next time, only the lights
are turned on. And finally, the lights are turned on and the train moves backward.
Then the same cycle of behavior begins again. This behavior is formally stated
in UML as depicted in figure 10. In the UML model, the designer separated two
sub-behaviors: one for the lights (on or off) , and one for the movement (stop,
forward and backward). The event named click stands for the pushing button
action.

This hierarchical state machine has to be flattened before being analyzed.
After migration to myFSM model and using specific tools, the FSM model train
is shown in figure 11.

Fig. 9. metamodels, modif models transformation and models from UML to myFSM

Fig. 10. UML graphical view of train
model behavior

Fig. 11. Flattened version of FSM for
mode ofl train

4 Related works

Recently, many works propose approaches to support metamodel evolutions and
model migration generation [13]. For automatic migration generation, literature
exhibits two strategies: first, ones [5] [7] [9] [16] that are based on editing (add,
remove and change) and refactoring operators, and others [4] [1] [14] [2] , on
explicit matching relationships between concepts. The goal of Modif is to help
metamodel design from an existing metamodel, so we follow the first strategy,
by encapsulating editing and refactoring operators. Compared to literature, the
main originality of Modif is the hide operator, a weak implementation of remove
operator, keeping implicit relationships between concepts; and also flatten im-
plementation, keeping all references at model level. Other works concentrate on
model migration and metamodel evolution semantic [10] [6] [15]. These works
are complementary to ours, to evaluate the correctness of transformations, and
will be investigated later.

5 Conclusion

Modif model helps DSML design and migration generation. Modif is based on
classical refactoring (flatten), editing operators (remove, rename, change) and
original ones (hide, flattenAll) defined at metamodel level. Experiments on de-
veloping a UML2FSM transformation tool show the efficiency of the approach
to develop metamodels and migrations quickly, concentrating on the necessary
information, that is to say, metamodel differences. In perspective, we are working
on more complex operators (refactoring based on pattern transformation: list to
set ...), java code generation instead of Kermeta and inversible transformations,
to provide tools to go back to the source model, after target model generation
and modification.

References

1. Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio. Au-
tomating co-evolution in model-driven engineering. In Proceedings of the 2008 12th
International IEEE Enterprise Distributed Object Computing Conference, pages
222–231, Washington, USA, 2008. IEEE Computer Society.

2. Marcos Didonet Del Fabro and Patrick Valduriez. Towards the efficient develop-
ment of model transformations using model weaving and matching transformations.
Software and Systems Modeling, 8(3):305–324, July 2009.

3. Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf.
4. Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin. Managing model

adaptation by precise detection of metamodel changes. In ECMDA-FA, pages
34–49, 2009.

5. Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juergens. Cope - automat-
ing coupled evolution of metamodels and models. In ECOOP 2009, Genoa, pages
52–76. Springer-Verlag, 2009.

6. Markus Herrmannsdoerfer and Maximilian Koegel. Towards semantics-preserving
model migration. In international MoDELS Workshops on Model Evolution, pages
33–42, 2010.

7. Markus Herrmannsdoerfer, Sander D. Vermolen, and Guido Wachsmuth. An ex-
tensive catalog of operators for the coupled evolution of metamodels and models.
In 3rd International Conference on Software Language Engineering, Eindhoven,
pages 163–182. Springer-Verlag, 2010.

8. Frédéric Jouault and Ivan Kurtev. Transforming models with atl. In MoDELS
Satellite Events, pages 128–138, 2005.

9. Stefan Jurack and Florian Mantz. Towards metamodel evolution of emf models
with henshin. In international MoDELS Workshops on Model Evolution, pages
90–95, 2010.

10. Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A manifesto for semantic
model differencing. In international MoDELS Workshops on Model Evolution,
pages 73–82, 2010.

11. Muller, Pierre-Alain and Fleurey, Franck and Jézéquel, Jean-Marc. Weaving exe-
cutability into object-oriented meta-languages, October 2005.

12. Object Management Group. UML Infrastructure specification,
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/. 2007.

13. Louis Rose, Markus Herrmannsdoerfer, James Williams, Dimitrios Kolovos, Kelly
Garcés, Richard Paige, and Fiona Polack. A Comparison of Model Migration Tools.
In Model Driven Engineering Languages and Systems, volume 6394 of Lecture Notes
in Computer Science, pages 61–75, Berlin, Heidelberg, 2010.

14. Jonathan Sprinkle and Gabor Karsai. A domain-specific visual language for domain
model evolution. J. Vis. Lang. Comput., 15(3-4):291–307, 2004.

15. Perdita Stevens. Bidirectional model transformations in qvt: Semantic issues and
open questions. In MoDELS, pages 1–15, 2007.

16. Guido Wachsmuth. Metamodel adaptation and model co-adaptation. In ECOOP,
pages 600–624, 2007.

Summarizing Semantic Model Differences

Shahar Maoz?, Jan Oliver Ringert??, and Bernhard Rumpe

Software Engineering
RWTH Aachen University, Germany

http://www.se-rwth.de/

Abstract. Fundamental building blocks for managing and understand-
ing software evolution in the context of model-driven engineering are dif-
ferencing operators one can use for model comparisons. Semantic model
differencing deals with the definition and computation of semantic diff
operators for model comparison, operators whose input consists of two
models and whose output is a set of diff witnesses, instances of one model
that are not instances of the other. However, in many cases the complete
set of diff witnesses is too large to be efficiently computed and effectively
presented. Moreover, many of the witnesses are very similar and hence
not interesting. Thus, an important challenge of semantic differencing
relates to witness selection and presentation.
In this paper we propose to address this challenge using a summarization
technique, based on a notion of equivalence that partitions the set of diff
witnesses. The result of the computation is a summary set, consisting of
a single representative witness from each equivalence class. We demon-
strate our ideas using two concrete diff operators, for class diagrams
and for activity diagrams, where the computation of the summary set is
efficient and does not require the enumeration of all witnesses.

1 Introduction

Differencing operators used for model comparisons are fundamental building
blocks for managing and understanding software evolution in model-driven en-
gineering. Semantic model differencing [12] deals with the definition and compu-
tation of semantic diff operators, whose input consists of two models, e.g., two
versions along the history of a model, and whose output is a set of diff witnesses,
instances of one model that are not instances of the other. Each witness serves
as a concrete proof for the difference between the two models and its meaning.

However, the complete set of diff witnesses is in many cases too large to be
efficiently computed and effectively presented. Moreover, many of the witnesses
are very similar and hence not interesting. Thus, an important challenge of
semantic differencing relates to witness computation, selection, and presentation.

In this paper we propose to address this challenge using the definition of a
summarization technique, based on a notion of equivalence that partitions the

? S. Maoz acknowledges support from a postdoctoral Minerva Fellowship, funded by
the German Federal Ministry for Education and Research.

?? J.O. Ringert is supported by the DFG GK/1298 AlgoSyn.

set of diff witnesses. The result of the summarization is a summary set, consisting
of a single representative witness from each equivalence class.

In recent work we have presented two concrete semantic diff operators, cddiff
[11] for class diagrams (CDs) and addiff [9] for activity diagrams (ADs), along
with the algorithms to compute them and with an initial evaluation of their
performance and the usefulness of their results. Here we demonstrate the ap-
plication of the summarization technique to these two concrete diff operators.
Moreover, the computation of the summary set is efficient and does not require
the enumeration of all witnesses.

It is important to note that we do not look for a difference summary in the
form of a succinct mathematical representation of all differences between the two
models, e.g., in the case of activity diagrams, a state machine accepting exactly
all those traces accepted by one model and not by the other. Rather, we believe
that in order to make semantic differencing useful and attractive to engineers,
one needs to take a constructive and concrete approach: to compute and present
concrete, specific, and thus easy to understand witnesses for the difference (e.g.,
in the case of activity diagrams, concrete execution traces).

Sect. 2 presents examples to motivate the need for summarization. Sect. 3
presents a formal, language independent overview of our approach and continues
with its specializations for CDs and ADs. Sect. 4 briefly describes the algorithms
used to compute the summarized sets of witnesses. Initial evaluation and discus-
sion appear in Sect. 5. Related work is discussed in Sect. 6 and Sect. 7 concludes.

2 Examples

Example I. Consider cd.v1 of Fig. 1, describing a first version of a model for
(part of) a company structure with employees, managers, and tasks. A design
review with a domain expert has revealed three bugs in this model: (1) the
number of tasks per employee should not be limited to two; (2) managers are
also employees, and they can handle tasks too; (3) an employee must have exactly
one manager. These bugs have been addressed in the second version cd.v2.

Diff witnesses for the semantic difference between cd.v2 and cd.v1 are object
models that are in the semantics of cd.v2 and not in the semantics of cd.v1. Fig. 2
shows two such diff witnesses: om1, consisting of an employee with three tasks,
who is managed by a manager; and om2, consisting of a manager that manages
herself, without any tasks. However, these are only examples. Many more diff
witnesses exist, e.g., those that are similar to om1 but include additional tasks,
or those that consist of duplicates of om1 and/or om2 etc.
Example II. Consider the ADs of Fig. 3, describing three versions of a ticket
reservation process. Witnesses for the semantic difference between two ADs are
execution traces that are allowed by one AD and are not allowed by the other.

For example, traces of ad.v2 that are not in ad.v1 include (1) a trace with
tickets = 3 where the action accounts comes before the action reserve, and (2)
a trace with tickets = 10 (where ad.v2 executes actions register and welcome

msg). Traces of ad.v3 that are not in ad.v2 are all traces with tickets < 12.

cd.v1

Employee

Manager
manages*

0..1

managedBy

Task

*

1

startDate: Datekind: PositionKind
PositionKind

<<enumeration>>

fullTime

partTime

cd.v2

Employee

Manager
manages*

1

managedBy

Task1

startDate: Datekind: PositionKind
PositionKind

<<enumeration>>

fullTime

partTime

external

1..2

Fig. 1. Two versions of a CD, cd.v1 and cd.v2.

:Manager
managedBy

manages:Employee t1:Task

om2

startDate = d1

t2:Task

startDate = d2

t3:Task

startDate = d3
:Manager

om1

kind = fullTime

kind = external

Fig. 2. Two diff witnesses from cddiff (cd.v2, cd.v1).

Overall, there are many diff traces, due to the possible values of the input tickets
and the partial order between reserve, accounts, and updates.

Given the large number of diff witnesses, for both cddiff and addiff , the
challenge we address in this paper relates to the computation, selection, and
presentation of a summarized set of witnesses.

3 Definitions

Consider a modeling language ML = 〈Syn, Sem, sem〉 where Syn is the set of all
syntactically correct expressions (models) according to some syntax definition,
Sem is a semantic domain, and sem : Syn → P(Sem) is a function mapping
each expression e ∈ Syn to a set of elements from Sem (see [5]).

The semantic diff operator diff : Syn× Syn→ P(Sem) maps two syntacti-
cally correct expressions e1 and e2 to the (possibly infinite) set of all s ∈ Sem
that are in the semantics of e1 and not in the semantics of e2. Formally:

Definition 1. diff(e1, e2) = {s ∈ Sem| s ∈ sem(e1) ∧ s /∈ sem(e2)}.

tickets < 8

ad.v1register

update

tickets >= 8

VIPprocess
welcome msg

accounts

reserve

process

payment

tickets < 12

ad.v2register

update

tickets >= 12

VIPprocess
welcome msg

accounts

reserve

process

payment

tickets < 12

ad.v3register

update

tickets >= 12

VIPprocess
welcome msg

accounts

reserve

process

payment

report

Fig. 3. Three versions of an AD for a ticket reservation process. The input variable
tickets ranges from 0 to 15.

The elements in diff (e1, e2) are called diff witnesses. When e1 and e2 are fixed,
we use diff for the set diff (e1, e2).

Let Q = {Q1, Q2, . . .} be a partition of diff , that is, diff =
⋃
Qi, ∀i : Qi 6= ∅

and ∀i 6= j : Qi ∩Qj = ∅. We define a partition function part : diff → Q, which
maps every diff witness dw ∈ diff to an element Qi of the partition Q such that
dw ∈ Qi. Note that Q, diff , and part all depend on fixed e1 and e2.

A summary of the set diff according to a partition Q, diff Q, is a subset of
diff consisting of a representative diff witness from each element in Q. Formally:

Definition 2. Given a set of diff witnesses diff = diff(e1, e2) and a partition Q,
a summary of diff is a set diffQ ⊆ diff s.t.

1. ∀dw1, dw2 ∈ diffQ, dw1 6= dw2 ⇒ part(dw1) 6= part(dw2)
2. ∀Qi ∈ Q, ∃dw ∈ diffQ s.t. part(dw) = Qi.

3.1 Specialization for class diagrams

In previous work we have defined cddiff , a specializations of diff for CDs [11].
We now present a related specialization of diff Q.

Our semantics of CDs is based on [4] and is given in terms of sets of objects
and their relationships. Thus, the elements of cddiff are object models (and they
are presented to the engineer using object diagrams). To define cddiff Q, we define
a partition of the set of all object models cddiff ⊆ OM into equivalence classes
based on the set of classes instantiated in each object model. More formally:

Definition 3 (class-equivalent partition for object models). The class-
equivalent partition maps every object model om1 ∈ cddiff to the set of all object
models in cddiff whose set of instantiated classes is equal to the set of classes
instantiated in om1: part(om1) = {om| classes(om) = classes(om1)}.

For example, consider the CDs shown in Sect. 2. A summary of the semantic
difference cddiff (cd.v2, cd.v1), according to the class equivalence partition, will
include exactly four object models: one consisting only of managers (an exam-
ple representative is a single manager managing herself, with no tasks and no
employees that are not managers), another one consisting of only managers and
employees (an example representative is a manager who manages an employee
with no tasks), another one with only managers and tasks (an example repre-
sentative is a manager managing herself and having several tasks), and, finally,
one consisting of managers, employees, and tasks (an example representative is
a model consisting of a manager managing an employee with several tasks).

3.2 Specialization for activity diagrams

In previous work we have defined addiff , a specializations of diff for ADs [9].
We now present related specializations of diff Q.

We use UML2 Activity Diagrams for the syntax of our ADs. In addition to
action nodes, pseudo nodes (fork, decision, etc.), the language includes input
and local variables (over finite domains), transition guards, and assignments.
Roughly, the semantics of an AD is made of a set of finite action traces starting
from an initial node, considering interleaving execution of fork branches, the
guards on decision nodes etc. (a formal and complete semantics of our ADs is
given in [10]). The elements of addiff are execution traces of one AD that are
not possible in the other AD; we call them diff traces. Note that we do not
require that the traces end in a final node; the diff trace stops as soon as one AD
reaches an action that cannot be matched by an action in the other AD. The
set addiff does not include traces that have a prefix that is by itself a diff trace.
In addition, in [9] we limit the results to one shortest diff trace per initial state.

Diff traces can be considered a special kind of model-based traces [8]. Each diff
trace is presented to the engineer both textually and visually, by enumerating
and highlighting the nodes participating in the trace on top of the concrete
syntax of the input ADs themselves (see [9]).

To define a summary of addiff , we define Ql, which partitions the set of all
diff traces based on the list of actions (action names) appearing in each trace;
i.e., traces that differ in terms of input or internal variable values but agree on
the list of actions to be executed are considered equivalent. More formally:

Definition 4 (action-list-equivalence partition for traces). The action-
list-equivalent partition maps every trace tr1 to the set of all traces whose list
of executed actions is equal to the list of executed actions in tr1: part(tr1) =
{tr| tr|action = tr1|action}.

For example, considering the ADs shown in Sect. 2, addiff Ql
of traces in

ad.v2 that are not possible in ad.v1 will include (1) a trace with tickets < 8
where accounts comes immediately after welcome msg, and (2) one trace with
8 ≤ tickets < 12 ending with welcome msg. That is, the summary will include
only 2 traces, each consisting of a different list of actions. However, addiff Ql

of traces in ad.v3 that are not possible in ad.v2 will include 6 traces, all with
tickets < 12 and ending with the action report, due to the 6 possible orderings
of the actions inside the fork/join (reserve, accounts, update).

Thus, we suggest also an alternative partition Qs, where two traces are con-
sidered equivalent iff the sets of actions included in them are identical. This
induces a coarser partition, as it abstracts away the order of actions in the
traces. More formally:

Definition 5 (action-set-equivalence partition for traces). The action-
set-equivalent partition maps every trace tr1 to the set of all traces whose set
of executed actions is equal to the set of executed actions in tr1: part(tr1) =
{tr| actions(tr) = actions(tr1)}.

Applying this coarser partition to our example, the summary for traces in
ad.v3 that are not in ad.v2 includes only a single trace, where tickets < 12.

Finally, it is important to note that in addition to the concrete representa-
tives, as part of the results of the computation for addiff Ql

and addiff Qs
(see

below), we have symbolic representations of the initial states related to each
equivalence class. These can be presented to the engineer together with the con-
crete traces, as part of the summary.

4 Computing Summaries

A naive approach to compute diff Q would first compute and enumerate all diff
witnesses in diff and then group them into equivalence classes according to the
given partition and choose one witness from each class. This approach, however,
is inefficient, as the total number of witnesses is typically an order of magnitude
larger than the number of equivalence classes in the partition. Thus, a more
efficient approach should be taken. We give an overview of our approach to
compute diff Q, for cddiff and addiff , given the partitions suggested above.

4.1 Computing summaries for cddiff

In [11] we showed how cddiff can be computed (in a bounded, user-defined scope)
using a translation to Alloy. Roughly, the translation takes two CDs as input
and outputs an Alloy module whose instances, if any, represent object models in
the semantics of one CD that are not in the semantics of the other. Computing
another witness is done by asking Alloy for another instance of the module
(technically, by constraining the SAT solver further to not allow the instances
that were already found).

To compute cddiff Q, when a diff witness is found, rather than simply asking
Alloy for another witness, we generalize the instance that was found to its set of
classes, and create a new predicate that specifies that it should not be the case
that this set of classes consists of exactly the classes appearing in an instance
of the Alloy module. We then rerun Alloy on a revised module, strengthened by
the new predicate. This guarantees that a new instance, if any is found, would

be a diff witness from a different equivalence class. We iterate until no more new
diff witnesses are found.

The above technique is guaranteed to provide a single representative from
each equivalence class without the need to enumerate all witnesses first. However,
like all other analysis done with Alloy, it is bounded by a user-defined scope. Also,
its performance may not scale well for large CDs. Addressing these limitations
may require the use of a completely different solution, i.e., not using Alloy, and
is left for future work.

4.2 Computing summaries for addiff

In [9] we showed how addiff can be efficiently computed using a symbolic fixpoint
algorithm, based on BDDs and the technologies of symbolic model-checking [2].
The algorithm starts with a representation of all non-corresponding states. It
then moves ‘backward’, and adds to the current set of states, states from which
there exists a successor in one AD such that for all successors in the other AD,
the resulting successor pair is in the current set of states. The steps ‘backward’
continue until reaching a least fixpoint, i.e., until no more states are added. When
the fixpoint is reached, the algorithm checks whether the fixpoint set includes
initial states. For each such initial state, if any, the algorithm uses the sets of
states computed during the backward steps to move forward (from the minimal
position it can start from) and construct shortest diff traces.

To compute addiff Ql
we start with the first phase of the original algorithm

and symbolically compute the set of all initial states from which a diff trace
may start and all sets of states included in all diff traces. Then, rather then
enumerating all concrete diff traces by computing a concrete diff trace starting
in each initial state, we start with the set of all initial states and symbolically
move forward to the set of all next states. If two or more actions are possible
in the next step, we split the set of next states according to their action and
continue, symbolically, for each of the sets in the split. We iterate this until
reaching the differentiating actions, i.e., until no corresponding next state exists.
Finally, for each symbolic trace we now have, we choose one initial state and
compute a concrete trace that starts from it. We symbolically represent the set
of initial states that share the list of actions in the trace (e.g., with ranges of
input variables).

Computing a summary with our coarser partition,addiff Qs
, is similar. When

we are done with computing the symbolic traces of the action-list partition,
before choosing concrete representatives, we iterate over the set of symbolic
traces and eliminate any symbolic trace whose set of actions already appeared
(in another order) in a previous trace. For each of the remaining symbolic traces,
we choose one initial state and compute a concrete diff trace that starts from it.

5 Initial Evaluation and Discussion

We have applied the above summarization strategies for cddiff and addiff to
the examples of Sect. 2. Table 1 lists the results in terms of the number of diff
witnesses (object models, traces) found, with and without summarization.

For cddiff , all our examples have 20 or more diff witnesses without summa-
rization (we computed cddiff with a scope of 10 and stopped after finding 20
witnesses). The number of witnesses found with summarization was only 3 or 4.
The results show the effectiveness of the summarization approach in significantly
reducing the number of diff witnesses presented to the engineer while keeping
the set as diverse as possible. Also, note that finding only 3 witnesses means that
the SAT solver was executed only 4 times (in the last execution, no diff witness
was found). This shows the efficiency of our approach.

For addiff , the number of diff traces found without summarization varied: for
some examples there are only few diff traces, while for others the number of diff
traces found was much higher, up to 72. Applying summarization to the examples
with a small number of witnesses does not make much difference. However,
applying summarization to the examples with the many witnesses results in
significantly smaller sets of witnesses, up to at most 6 representative traces
for each example. For the action-list partition, significant reduction is observed
when the ADs state space is large due to many possible inputs (many variables
or variables with large domains like our tickets variable). For the action-set
partition, further reduction is observed when the ADs’ state space is large and
where differences occur after some fork/join blocks with much partial order.

In the general case, summarization may entail information loss: one cannot
always use the summary to enumerate all witnesses. Yet, in some cases, it is pos-
sible to keep an efficient symbolic representation of each equivalence class within
the summary, so that diff can be easily computed from diff Q. For example, the
computation of addiff Ql

, based on the action-list partition, includes a symbolic
representation of all input states where diff traces may start. Given initial states
and the list of actions that characterize each of the partitions, all diff traces can
be reconstructed. For addiff Qs

, based on the action-set partition, however, this
is not the case; once the order of actions is abstracted away, one cannot use an
initial state to generate a trace that is guaranteed to be a diff trace.

Finally, we consider the following alternatives for semantic differencing sum-
marization. First, one may suggest a partition based on syntactic differences,

Name # Wit. found # Wit. found with summarization

cd.v1 vs. cd.v2 20 3
cd.v2 vs. cd.v1 20 4

ad.v1 vs. ad.v2 4 1/1
ad.v2 vs. ad.v1 20 3/3
ad.v2 vs. ad.v3 72 6/1
ad.v3 vs. ad.v2 72 6/1
ad.v1 vs. ad.v3 28 4/2
ad.v3 vs. ad.v1 36 5/4

Table 1. Results of applying the summarization strategies to the examples from Sect. 2. We com-
puted CDDiff with scope 10 and stopped after 20 witnesses were found. For ADDiff summarization
we show the number of witnesses according to the action-list partition / action-set partition.

i.e., such that witnesses are classified according to the syntactic differences they
‘cover’. Second, in addition to partitioning, one may be interested in defining a
(partial) order, such that the summarization method chooses a representative
that is also minimal within its equivalence class. For example, in the case of
cddiff , a partial order may be defined based on diff witness size, i.e., the number
of objects in the object model. In the case of addiff , a partial order may be
defined based on diff traces length. It seems that smaller diff witnesses would
be easier to present and understand. More generally, rather than ordering wit-
nesses locally, within each equivalence class, one may suggest a pre-order on all
diff witnesses and look for global minimal ones.

Formalizing and evaluating these alternatives is left for future work.

6 Related Work

The problem of summarizing semantic differences is close to the problem of
effective design space exploration [7], where the goal is to quickly visit a diverse
set of solutions across a design space. The approach in [7] takes a user-defined
notion of equivalence as input, and generates symmetry breaking predicates,
which ensure that the underlying exploration engine does not sample multiple
equivalent design candidates. In addition, the work employs randomization to
incrementally construct a diverse set of non-isomorphic solutions, ideally making
the solver ‘jump around’ various parts of the design space, sampling a wide
variety of solutions. The work is integrated in a tool called FORMULA, which
uses an SMT solver.

In [6], the authors present a technique to summarize all counterexamples of an
LTL model-checking problem. They generalize concrete examples found by the
SMV model-checker into equivalence classes, describe these with LTL formulas,
and re-run the model-checker on a revised formula where examples that are
equivalent to previously found ones are not considered. The work suggests four
specific kinds of equivalence, at different levels of abstraction.

Our work is similar, in that we use class equivalence as a criteria for results
selection and presentation. It is also very different, as it is specifically applied
to the problem of semantic differencing for several modeling languages, and
thus the criteria for ‘symmetry breaking’ and the technologies used (Alloy/SAT,
BDD-based algorithms) are specific and very different than the ones in [6, 7].

Many works present syntactic approaches to differencing (e.g., [1, 13, 14]).
Some related tools support hierarchical presentation of differences where the
hierarchy is defined by the abstract syntax tree (AST) [3]. All differences are
computed but the presentation in the AST can encapsulate them under col-
lapsed sub-trees. This may be viewed as a form of presentation summarization.
Note that our summarization technique is not limited to the presentation but
is applied already as part of the computation: we show how to compute the
summary set without the enumeration of all witnesses during the computation.

We are not aware of other work in the domain of software evolution that is
directly related to differences summarization.

7 Conclusion

We have presented summarization techniques for semantic model differencing.
We motivated the challenge of summarization and suggested ways to address it
in the context of CD and AD semantic differencing. We demonstrated the utility
of our summarization approach in providing a small yet informative set of diff
witnesses and discussed alternatives and future challenges.

Future work includes the integration of the techniques presented here into the
prototype implementations presented in [9] and [11]. Moreover, as we extend se-
mantic differencing to additional languages, e.g., feature models and statecharts,
we will be looking for summarization techniques for these languages too.

References

1. M. Alanen and I. Porres. Difference and Union of Models. In Proc. 6th Int. Conf.
on the UML, volume 2863 of LNCS, pages 2–17. Springer, 2003.

2. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Inf. Comput., 98(2):142–170, 1992.

3. EMF Compare. http://www.eclipse.org/modeling/emft/?project=compare.
4. A. Evans, R. B. France, K. Lano, and B. Rumpe. The UML as a Formal Modeling

Notation. In J. Bézivin and P.-A. Muller, editors, Proc. UML, volume 1618 of
LNCS, pages 336–348. Springer, 1998.

5. D. Harel and B. Rumpe. Meaningful Modeling: What’s the Semantics of “Seman-
tics”? IEEE Computer, 37(10):64–72, 2004.

6. A. L. Juarez-Dominguez and N. A. Day. On-the-fly counterexample abstraction
for model checking invariants. Technical Report CS-2010-11, School of Computer
Science University of Waterloo, Canada, 2010.

7. E. Kang, E. K. Jackson, and W. Schulte. An approach for effective design space
exploration. In R. Calinescu and E. K. Jackson, editors, Monterey Workshop,
volume 6662 of LNCS, pages 33–54. Springer, 2010.

8. S. Maoz. Model-based traces. In M. R. V. Chaudron, editor, MoDELS Workshops,
volume 5421 of LNCS, pages 109–119. Springer, 2008.

9. S. Maoz, J. O. Ringert, and B. Rumpe. ADDiff: semantic differencing for activity
diagrams. In ESEC / SIGSOFT FSE, pages 179–189. ACM, 2011.

10. S. Maoz, J. O. Ringert, and B. Rumpe. An Operational Semantics for Activity
Diagrams using SMV. Technical Report AIB 2011-07, RWTH Aachen University,
Germany, 2011.

11. S. Maoz, J. O. Ringert, and B. Rumpe. CDDiff: Semantic differencing for class
diagrams. In ECOOP, volume 6813 of LNCS, pages 230–254. Springer, 2011.

12. S. Maoz, J. O. Ringert, and B. Rumpe. A manifesto for semantic model differenc-
ing. In J. Dingel and A. Solberg, editors, MODELS 2010 Workshops, volume 6627
of LNCS, pages 194–203. Springer, 2011.

13. D. Ohst, M. Welle, and U. Kelter. Differences between versions of UML diagrams.
In Proc. ESEC / SIGSOFT FSE, pages 227–236. ACM, 2003.

14. Z. Xing and E. Stroulia. Differencing logical UML models. Autom. Softw. Eng.,
14(2):215–259, 2007.

On the Use of Operators for the Co-Evolution of
Metamodels and Transformations

Steffen Kruse

OFFIS - Institute for Information Technology
Escherweg 2, 26121 Oldenburg, Germany

steffen.kruse@offis.de

http//www.OFFIS.de

Abstract. The artefacts used in model driven approaches are often
tightly coupled. Besides models being bound to metamodels by a confor-
mance relation, transformation descriptions are defined on metamodels
to perform their function. When the metamodels are changed during
development or due to changing requirements, existing transformations
need to be adapted. We propose a set of operators to ease this task. The
operators are applied to metamodels to perform a change and allow the
(semi-) automatic co-evolution of transformations.

Keywords: metamodel, model transformation, co-evolution, operators

1 Introduction

Model Driven Software Development (MDSD) is an approach to software engi-
neering to ease the handling of complexity in the development and maintenance
of modern software systems. MDSD is based on the concept of a model as a rep-
resentation of a (software) system [2]. Models are expressed in languages, models
of which in turn are called metamodels. Further techniques used in MDSD are
code generation (where source code is generated from a set of models) and model
to model transformation, of which code generation can be seen as a special case.
The artefacts used in MDSD projects are tightly coupled. Models must be con-
formant to their respective metamodel to be valid as model transformations must
match one or more metamodels to perform their function. This can become a
problem when faced with evolution: as metamodels are extended or adapted, the
dependencies may break until all dependent artefacts are adapted accordingly.
The problem of co-evolution for metamodels and models has been addressed by a
number of approaches (see for example [3, 8–10]). While being related, the prob-
lem of the co-evolution of metamodels and model transformations poses different
and unique problems.

In this paper, we propose an initial set of operators that can be applied on a
given metamodel to perform changes and allow the automatic or semi-automatic
co-evolution of transformation descriptions. Atomic operators can be combined
to form more complex ones. We implemented these operators in Java and tested
them on copy transformations described in ATL to gain initial insight into the
viability of this approach.

2 Steffen Kruse

2 Impact of metamodel changes on transformations

Model to model transformations play an important role in model driven software
development (MDSD) [16]. Numerous languages have been developed, dedicated
solely to specify such transformations [4]. We chose the declarative parts of the
Atlas Transformation Language (ATL) [11] as a starting point for our opera-
tor set. In essence, a model transformation defined in ATL is made up of a
set of rules, where each rule produces one or more target model elements from
a source model element. The application of a rule is determined by a source
pattern, defined in terms of a source metamodel. The created elements are con-
formant to a target metamodel. ATL relies on a slightly adapted version of the
Object Constraint Language (OCL) to perform model navigation and to calcu-
late values for target properties. To analyse the impact on metamodel changes
on transformation rules in ATL, we first discern which metamodel involved in
the transformation is changed. We refer to the source metamodel as the left-
hand-side metamodel (LHS) and the target metamodel as right-hand-side (RHS)
respectively.

Figure 1 shows an excerpt of the (informal) syntax of an ATL Matched Rule,
taken from the ATL Language Guide [1]. Metamodel changes to the LHS can
impact the following parts of an ATL rule: À The source pattern Á conditions
imposed on the source pattern (expressed in OCL) and Ã the binding assignment.
Changes to the RHS are potentially reflected in: Â the target pattern (each rule
can have numerous target patterns) and Ã the definition of properties in the
binding. We leave out the imperative part ((the do-statement)) and the variable
section (see the ATL User Guide [1] for further detail). Both are to be looked at
in the future, building on the work presented here.

Fig. 1. ATL MatchedRule Syntax

Metamodel/Transformation Co-Evolution 3

OCL is used for two purposes in ATL: to formulate conditions on the appli-
cability of rules and to calculate values in the property bindings. In both cases,
OCL statements may navigate over models and can potentially involve any part
of the LHS metamodel. This can lead to very complex source patterns for com-
plex rules. We simplify the influence of OCL expressions on the evolution process
for a start, by either disabling the application of operators when they impact
expressions or delegating to human intervention (bar rename operations which
can be easily undertaken for OCL expressions). Depending on the operator and
the expression structure, further adaption of the expressions may be possible,
which would broaden the use of the operator. We leave this investigation for
future work. Markovic and Baar have shown how OCL expressions can be mi-
grated along with UML models [13], which gives good pointers to the adaptation
of complex OCL expressions in transformation rules.

3 Operators

Table 1 summarizes the influence of the operators on transformation rules, de-
pending on where they occur and which part of the rule they affect. For the LHS
these are the source pattern element (Source P.), the condition, and the binding
assignment (Binding A.). For the LHS they are the target pattern (Target P.)
and the property binding (Binding). The kind of adaptation possible is given as
follows: [A] stands for automatic adaptation, [-] the operator has no influence
and [H] human intervention is needed. In cases where we list the two possibil-
ities [A/H], automatic adaptation is possible most of the time – depending on
further detail on the kind of change or the structure of the rule (see the detailed
description of the operators.) The next sections discuss the operators and their
influence in more detail.

3.1 Atomic Operators

– Rename Class/Attribute/Relation: Elements (classes/attributes/relations)
of a metamodel are renamed. These operators are very similar – both in their
pre-conditions and influence on transformation rules. Names of elements are
required to be unique in their given namespace, so existing names are ex-
cluded by pre-condition when applying these operators on elements. For
attributes and relations this also has to be checked for inheritance. When
the pre-conditions hold, metamodel references can be adapted automatically
in all parts of transformation rules.

– Add Class: A new class is added to the metamodel. The class must be
unique in its namespace. The syntactic correctness is preserved for trans-
formation rules on both sides, as existing rules are not influenced by new
elements. Depending on the semantics of the transformation, new rules may
have to be created by hand to provide for the new class.

– Add Relation / Attribute: A new relation or attribute (property) is added
to a class in the metamodel. Its name must be unique for the owning class

4 Steffen Kruse

Operator
LHS RHS

Source P. Condition Binding A. Target P. Binding

Rename Class A A A A A
Rename Attribute - A A - A
Rename Relation - A A - A

Add Class A A A A A
Add Relation - A A - A/H
Add Attribute - A A - A/H

Delete Class A - - - A
Delete Relation - A A/H - A
Delete Attribute - A A/H - A

Pull Up Attribute - A A - A/H
Push Down Attribute - A A/H - A
Pull Up Relation - A A - A/H
Push Down Relation - A A/H - A

Introduce Inheritance - A A - A/H

Extract Superclass A A A A A/H
Flatten Hierarchy A A A A A

Table 1. Operator Influence

and classes along the inheritance hierarchy. For the LHS metamodel, trans-
formation rules do not have to be adapted to preserver syntactic correctness.
For the RHS, human intervention is required only when the added property
is obligatory and no default value is supplied in the metamodel. In this case,
all rules which feature a target pattern for the owning class or descending
classes must be adapted to supply a value for the new property by hand.

– Delete Class: An empty and unreferenced class is deleted from the meta-
model. To empty a class and remove all references to it first, the Delete
Property, Push Down Property etc. operators can be applied prior. For the
LHS, transformation rules that feature the deleted class as source pattern
element can be removed. As the operator can only be used when the class
is not referenced, the class cannot feature in the condition or binding as-
signment parts of rules for other source pattern elements. For the RHS, the
target patterns for the class can be removed. Should this leave a rule without
any target pattern, the entire rule can be removed.

– Delete Relation / Attribute: A relation or attribute (property) is deleted
from a class. Rules that need to be adapted either refer to the class from
which the property is removed or any subclass; or contain OCL expressions
that refer to the removed property. The adaptation is as follows:
• For the LHS:

∗ Conditions - If the deleted property is part of a condition restricting
the application of a rule, the condition can be removed. This means
that the rule potentially applies more often. The user should be
warned of this behaviour.

∗ Binding Assignment - If the property is featured in a binding as-
signment of an RHS property, the whole assignment can be removed

Metamodel/Transformation Co-Evolution 5

if the RHS property is non-obligatory or has a default value. This
would preserve syntactic correctness. Otherwise, human intervention
is needed.

• RHS: The property can have a binding for the target pattern of the class
or the subclasses it was removed from. The binding assignment can be
removed to preserve syntactic correctness.

– Pull Up Relation / Attribute: A relation / attribute (property) is pulled
from all subclasses into a superclass and removed from the subclasses. This
may mean that the user first has to introduce the property to subclasses
that don’t have the given property. This can be done by applying the Add
Reference /Attribute operators.
• Rules involving the superclass: All rules that match the superclass to

which the property is pulled can be treated analogous to the Add Re-
lation/Attribute operators. This means, for the LHS case, no change is
needed, as the addition of a property does not break the syntactic cor-
rectness of the rules. For the RHS, human intervention is only needed
if the property is obligatory and no default value is given. In all other
cases no change is needed.

• Rules involving the subclasses: All rules that match the subclasses from
which the property is pulled require no adaptation, as the property re-
mains available through inheritance.

– Push Down Relation / Attribute: A property is pushed from a super-
class A into all subclasses that are removed from the superclass by exactly
one level of inheritance. Subsequent application of the Push Down Property
operator along the inheritance tree can push properties to further removed
classes. Pushing properties to all child classes makes little sense on its own,
it is expected that the user applies further operations like removing the
property with the Delete Property operator on subclasses that don’t use the
property (this was the original intention of Fowlers Push Down Field Refac-
toring [7]) or removing the superclass with Delete Class if it contains no
further properties.
For this operator we have to discern between rules that use the superclass
from which the property is removed and the subclasses that receive the
property. For rules on the subclasses, the impact is simple: no adaption is
needed as the property was previously available through inheritance. For the
superclass, the behaviour is like the Delete Relation / Attribute operators:
• For the LHS:

∗ Conditions - If the removed property is part of a condition restricting
the application of a rule, the condition can be removed. This means
that the rule potentially applies more often. The user should be
warned of this behaviour.

∗ Binding Assignment - If the property is featured in a binding as-
signment of an RHS property, the whole assignment can be removed
if the RHS property is non-obligatory or has a default value. This
would preserve syntactic correctness. Otherwise, human intervention
is needed.

6 Steffen Kruse

• RHS: The property can have a binding for the target pattern of the class
it was pushed down from. The binding assignment can be removed to
preserve syntactic correctness.

– Introduce Inheritance: Inheritance is introduced between two classes. For
the LHS, no change is needed; the syntactic correctness of all rules is pre-
served. For the RHS, human intervention is only needed when the new su-
perclass contains obligatory properties (without default values). Then all
rules matching the new subclass must be adapted to supply a value for the
newly inherited property. This is analogous to the Add Attribute/Reference
operators.

3.2 Complex Operators

Complex operators are (in part) made up of simple operators. There are two
reasons for providing complex operators: 1) convenience – to sum up common
cases in one operator and 2) the use of the complex operator provides more
information that can be used for the adaptation of transformations than just
the combined use of simple operators. Extract Superclass is an example of the
first case, while Flatten Hierarchy applies to both.

– Extract Superclass: A new superclass of a given class is introduced and
some properties of the subclass are moved to the new superclass. This op-
erator can be wholly made up of the Add Class, Introduce Inheritance and
repeated use of Pull Up Property Operators. The same constraints and adap-
tions apply. This operator is very much like Fowlers Extract Superclass refac-
toring [7].

– Flatten Hierarchy: The purpose of this operator is to reduce the inher-
itance graph. At first glance, this operator can be implemented using the
Push Down Property operator on all properties of the superclass until it
is empty and then use the Delete Class operator to remove the superclass.
Yet, a special case exists where this is impractical: Assume this operator is
used on the LHS metamodel and there are rules that apply to the super-
class in the source pattern. Before the change, the rule would be executed
for all instances of subclasses as well as for those of the superclass. If the
rule simply gets deleted (as with the Delete Class operator) target elements
are no longer created for the subclass instances. We consider this to be an
unexpected and inconvenient result for the user. Since we have more infor-
mation available when the Flatten Hierarchy operator is used explicitly, we
propose creating copies of rules that match the superclass for each subclass
and changing the source pattern to match each subclass. Then the original
rule for the superclass can be removed.

4 Evaluation

We implemented the operators in Java and perform them on metamodels in
Ecore and the abstract syntax model of ATL transformations in the Eclipse

Metamodel/Transformation Co-Evolution 7

Fig. 2. Flatten Hierarchy: Initital State

Fig. 3. Flatten Hierarchy: after Push Down Attribute

8 Steffen Kruse

Fig. 4. Flatten Hierarchy: Final State

ATL infrastructure1. For an initial evaluation of the operators, we apply them
to copy transformations. A copy transformation for a given metamodel produces
an exact copy of all models conforming to the metamodel. It features the same
metamodel both as source and target. Copy transformations can be generated
by a higher-order transformation (HOT). This HOT takes any given metamodel
and produces a matching copy transformation. Copy transformations can be used
e.g. as foundations for model refinement [12]. To use operators for the evolution
of copy transformations makes little sense in practice, as the transformation can
be re-generated anytime the metamodel evolves. Yet, by comparing the two, we
gain some initial insight into how the operators fare.

As an example, we discuss the use of the complex Flatten Hierarchy op-
erator on a simple metamodel. We generated the copy transformation for the
metamodel using Xpand of the Eclipse Model To Text (M2T) project2. The
initial state of the metamodel and the corresponding copy transformation are
shown in figure 2. (We have removed the copy rule for Class B for brevity in
the figure; it is an exact duplicate of the rule for Class C.) The generated copy
transformation contains a rule for each class, and the value of the name attribute
is copied in the binding section. The condition in each source pattern ensures
that the rule only matches exactly the given class and not subclasses (who have
their own copy rules). We apply the Flatten Hierarchy operator to metamodel
and transformation and interpret the change to have taken place on the RHS.
The operator first uses the Push Down Attribute operator to move the name at-
tribute from the superclass A to the subclasses B and C. As a result, the binding
assignment for the attribute is removed for the copy rule of class A. The other
rules are left unchanged (see figure 3). After the superclass A is relieved of its
attribute, it can be removed. The result is shown in figure 4. In consequence,
the copy rule for class A is removed from the copy transformation.

Generating the copy transformation for the new metamodel yields the same
resulting set of rules. We take this as an indication that the approach is at least
viable.

1 see http://eclipse.org/atl/
2 See http://www.eclipse.org/modeling/m2t/?project=xpand

Metamodel/Transformation Co-Evolution 9

4.1 Discussion

First results for copy transformations indicate that an operator based approach
can be beneficial to the co-evolution problem for metamodels and model transfor-
mations. In many cases, at least syntactic correctness of transformations can be
preserved when making changes. Yet, the semantics of transformations are very
difficult to cater for. This is one of the main differences between the co-evolution
transformations vs. co-evolution of models. The semantics of the conformance
relation between metamodels and models is well defined, while the semantics of
transformations very much depend on their purpose. For example, copy trans-
formations have to regard every class and attribute of a metamodel. When a
class is added to the metamodel, the rules of the copy transformation can be left
unchanged for the transformation to be syntactically correct – yet it no longer
performs according to its purpose.

Furthermore, the impact on transformations depends not only on the type
of change performed on the metamodel, but also how the affected elements are
used in transformation rules. It is possible that one transformation can be au-
tomatically adapted to a change in a metamodel, while another transformation
using the same metamodel requires human intervention. We hope to find further
insight in the future as to which kinds of transformations lend themselves well
to automatic co-evolution and which don’t.

5 Future and Related Work

Further operators need to be defined to make the set complete (any metamodel
can be de- and reconstructed using operators.) Regarding the adaptation of OCL
expressions along with the rules may broaden the use of operators. So far, we
have only looked at transformations defined in ATL, but the given approach may
lend itself well to other transformation languages and a comparison is seen to be
beneficial. Finally, we plan to compare our operators to those used for metamodel
and model co-evolution as a combined approach may make evolution easier – if
it is possible.

The use of operators on co-evolution issues has been covered well for models
[3, 8–10]. For metamodel and transformation co-evolution, Mndez et al. have de-
scribed the problem and given first pointers to an operator-based approach [14].
Di Ruscio et al.[5] describe an initial approach using a DSL for both metamodel
and model and transformation co-evolution. For OCL, Markovic and Baar have
shown how OCL expressions can be migrated along with UML models [13]. Other
approaches to the problem exist, for example based on evolution in the ontology
space [15] or by always generating transformations for all metamodel versions
[6]. The co-evolution problem is complex and has many facetts, as transforma-
tions have a vast field of application. Which approach is well suited for which
case remains to be evaluated in the future.

10 Steffen Kruse

References

1. Atl/user guide - the atl language, http://wiki.eclipse.org/ATL/User_Guide_-_
The_ATL_Language, last seen: 14.07.2011

2. Bzivin, J.: In search of a basic principle for model driven engineering. In:
UPGRADE. CEPIS (Council of European Professional Informatics Societies),
NOVTICA (2004)

3. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. Enterprise Distributed Object Computing Confer-
ence, IEEE International 0, 222–231 (2008)

4. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Syst. J. 45(3), 621–645 (2006)

5. Di Ruscio, D., Iovino, L., Pierantonio, A.: What is needed for managing co-
evolution in MDE? In: Proceedings of the 2nd International Workshop on Model
Comparison in Practice. pp. 30–38. IWMCP ’11, ACM, New York, NY, USA (2011)

6. Didonet Del Fabro, M., Valduriez, P.: Towards the efficient development of model
transformations using model weaving and matching transformations. Software and
Systems Modeling 8, 305–324 (2009)

7. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA (1999)

8. Garces, K., Jouault, F., Cointe, P., Bézivin, J.: Adaptation of Models to Evolving
Metamodels. Research Report RR-6723, INRIA (2008)

9. Gruschko, B., Kolovos, D.S., Paige, R.F.: Towards synchronizing models with
evolving metamodels. In: Proceedings of the Workshop on Model-Driven Software
Evolution - MoDSE2007 at the 11th European Conference on Software Mainte-
nance and Reengineering - CSMR 2007 (2007)

10. Herrmannsdoerfer, M., Vermolen, S.D., Wachsmuth, G.: An extensive catalog of
operators for the coupled evolution of metamodels and models. In: Proceedings of
the Third international conference on Software language engineering. pp. 163–182.
SLE’10, Springer-Verlag, Berlin, Heidelberg (2011)

11. Jouault, F., Kurtev, I.: Transforming models with atl. In: Bruel, J.M. (ed.) MoD-
ELS Satellite Events. Lecture Notes in Computer Science, vol. 3844, pp. 128–138.
Springer (2005)

12. Kapova, L., Goldschmidt, T.: Automated feature model-based generation of refine-
ment transformations. Software Engineering and Advanced Applications, Euromi-
cro Conference 0, 141–148 (2009)

13. Markovic, S., Baar, T.: Refactoring ocl annotated uml class diagrams. Software
and System Modeling 7(1), 25–47 (2008)

14. Méndez, D., Etien, A., Muller, A., Casallas, R.: Transformation migration after
metamodel evolution. In: International Workshop on Model and Evolution. Oslo,
Norway (October 2010)

15. Roser, S., Bauer, B.: Journal on data semantics xi. chap. Automatic Generation
and Evolution of Model Transformations Using Ontology Engineering Space, pp.
32–64. Springer-Verlag, Berlin, Heidelberg (2008)

16. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-
driven software development. IEEE Software 20, 42–45 (2003)

 1

Towards Feature-Based
Evolutionary Software Modeling

Hassan Gomaa

Department of Computer Science

George Mason University, Fairfax, VA
hgomaa@gmu.edu

Abstract. This paper proposes an evolutionary development approach, which uses
software product line and feature modeling concepts for evolving multi-version
systems. This model-based approach addresses both the original development and
subsequent post-deployment evolution. The different versions of an evolutionary
system are considered a software product line, with each version of the system a
product line member. Evolution is built into the software development approach
because variability in the software architecture is determined by considering the
impact of each variable feature on the software architecture and evolving the
architecture to address the feature. Being feature based, the approach closely relates
the evolution of the software architecture to the evolution of software requirements.

Keywords: software evolution, feature modeling, software product lines,
software variability, state machines, software architecture, software
components.

1. Introduction

This paper proposes an evolutionary software development approach, which uses
software product line (SPL) [Clements02, Gomaa05, Pohl05] and feature modeling
[Kang90] concepts for evolving multi-version systems. The multi-version systems
constitute a family of systems with some common functionality and some variable
functionality, a property they share with software product lines. Feature modeling is
widely used in software product lines to characterize SPL variability prior to
application derivation and deployment. With the approach described in this paper, the
goal is to model all versions of the system, including previously deployed systems as
a product line. This provides an effective approach for configuration management of
multi-version systems.
 The emphasis of this paper is on how feature modeling can be used to characterize
variability due to software evolution. The approach extends the PLUS UML-based
SPL design method [Gomaa05] to address feature-based evolutionary software
design. This approach was first suggested in [Gomaa06]. This paper follows up with a
more detailed investigation describing how software evolution can be incorporated
into a multiple view modeling method using software product line and feature
modeling concepts.

 2

2. Evolutionary Software Development

The field of software evolution [MensDemyer08] started with the seminar work of
Lehman and Belady [Lehman80] who recognized that software evolution is different
from software maintenance. A comprehensive survey of software evolution is given in
[Mens08]. Iterative software life cycles such as the Spiral model [Boehm] recognize
that software evolution is integral to software development.
 The Evolutionary Process Model for SPL engineering used in the PLUS method
[Gomaa05] is a highly iterative software process that eliminates the traditional
distinction between software development and maintenance. Furthermore, because
new software systems are outgrowths of existing ones, the process takes a software
product line perspective; it consists of two main processes (see Fig. 1):

a) Evolutionary product line (domain) engineering. A product line multiple-view
model, which addresses the multiple views of a software product line, is developed.
The product line multiple-view model, product line architecture, and reusable
components (referred to as core assets in [Clements02]) are developed and stored in
the product line reuse library.

Figure 1 Evolutionary Process Model for Software Product Lines

b) Software Application Engineering. A software application multiple-view model

is an individual product line member derived from the software product line multiple-
view model. The user selects the required features for the individual product line
member. Given the features, the product line model and architecture are adapted and
tailored to derive the application architecture. The architecture determines which of
the reusable components are needed for configuring the executable application.

The architecture-centric evolution approach described in this paper follows the
model driven architecture concept in which UML models of the software architecture
are developed prior to implementation. With this approach, the models can later
evolve after original deployment. The kernel (base) software architecture represents

 3

the commonality of the product line. Evolution is built into the software development
approach because the variability in the software architecture is developed by
considering the impact of each variable feature on the software architecture and
evolving the architecture to address the feature. The development approach is a
feature-driven evolutionary approach, meaning that it addresses both the original
development and subsequent post-deployment evolution. Being feature based, the
approach closely relates the software architecture evolution to the evolution of
software requirements.
 The addition of optional and alternative features necessitates the evolution of the
original base software architecture by designing optional and variant components to
realize these features. This paper describes how feature dependent evolution can be
used to systematically incorporate optional and variant components into an
evolutionary multi-view model and component-based software architecture.

3. Evolutionary Feature Modeling

Feature modeling is an important concept in software product line engineering
[Kang90]. Features are analyzed and categorized as common features (must be
supported in all product line members), optional features (only required in some
product line members), alternative features (a choice of feature is available) and
prerequisite features (dependent upon other features). There may also be dependencies
among features, such as mutually exclusive features. The emphasis in feature
modeling is capturing the product line variability, since these features differentiate
one member of the family from the others [Gomaa05].
 Feature modeling can be used to differentiate among the changes to the software
system as it evolves through different versions. Thus each version of the system can
be described by means of the features it provides. However, during evolution the
reuse property of a feature can change. Thus, what constitutes a kernel feature in the
first version of the system might evolve into an optional or alternative feature in a
subsequent version of the system.
 Consider an example of feature evolution. A basic microwave oven system is to
evolve by adding some new features, as depicted in Fig. 2 using the UML meta-class
notation with stereotypes depicting features and feature groups [Gomaa05]. Using
SPL concepts, the original system and evolved system are both members of the SPL.
Features provided by both systems are considered common features, while features
representing evolving requirements are variable features. The feature variability could
be either optional or variant. In the evolutionary microwave oven example, evolution
involves adding a Light feature (light is present or not) and a Beeper feature (beep
when cooking is finished) to a basic microwave oven. Both features are categorized as
optional features from an SPL perspective (Fig. 2), because they only exist in the
evolved system. Two other features are added, a multi-line display in place of the
original one-line display and a multi-level heating element (high, medium, low)
instead of a one-level heating element feature. For these latter two cases, the features
are categorized as alternative features (Fig. 2), since in each case a choice has to be
made, e.g., between the one-line display and the multi-line display. One of the

 4

alternative features can be chosen as the default feature. From a feature modeling
perspective, the initial version of the microwave oven system evolves with the One
Line Display feature evolving from a common feature to a default feature in a new
Display Unit feature group, in which the alternative Multi Line display feature is
added (Fig. 2). The feature group is an exactly-one-of feature group consisting of two
mutually exclusive features, one of which must always be selected for a system.

Figure 2 Feature Model for Evolutionary System

4. Evolutionary Use Case Modeling

Whereas feature modeling is effective at differentiating between commonality and
variability, use case modeling provides a behavioral perspective on software
functionality by describing the sequence of interactions between the actor(s) and the
system. It can thus be used to determine where the evolutionary changes need to be
introduced in the interaction sequence, which can be taken advantage of during later
during evolutional behavioral modeling, as described in Section 5. In particular,
during use case modeling, new functionality can be introduced through variation
points in the use case description. Variation points can be used to describe newly
evolved functionality (represented as an optional feature in the feature model) or
evolved alternative functionality (represented as an alternative feature in the feature
model). Larger scale evolution could result in new use cases being added, which
would be categorized as optional or alternative use cases.
 An example from the Microwave Oven case study is the Cook Food use case
describing the sequence of interactions between the actor (the user) and the system.
The main sequence consists of: the user places an item in the oven, enters the cooking

 5

time, and presses the start button; the system then cooks the food for the specified
time. Adding the light feature would result in the variation points introduced for
switching on the light when the door is opened and cooking is started, and switching
off the light when the door is closed and cooking is finished. Adding the multi-line
display would add variation points at steps in the use case where information is
displayed on the display. Other evolutionary features such as TOD Clock are
sufficiently different that they necessitate the addition of optional use cases, Set TOD
Clock and Display TOD, which must be reused together and hence constitute one
feature.

5. Evolutionary Behavioral Modeling

Evolutionary behavioral modeling (also known as dynamic modeling) is an iterative
strategy [Gomaa05] to help determine the impact of each newly evolved feature on
the software architecture. This results in new components being added to the
architecture or existing components having to be modified. The base system is the
first version of the evolutionary architecture and corresponds either to the first
deployed system or for a product line design, an architecture that consists of the
kernel objects.
 As the system evolves, it is likely that optional objects (such as Light Interface and
Beeper Interface) and variant objects (such as Multi-Line Display Interface) will need
to be added. It is also possible that due to evolutionary change, some kernel objects
might need to evolve into optional or variant objects.
 The evolutionary development approach starts with the base system and considers
the impact of optional and/or alternative features. This results in the addition of
optional or variant components to the evolving architecture. For example adding the
Light and Beeper features necessitates the addition of the optional Light Interface and
Beeper Interface. However it also necessitates a change in the Microwave Control
object that must send commands to these objects, such as Switch On, Switch Off, and
Beep, as shown in the communication diagram in Fig. 3.

Figure 3: Evolution with addition of optional objects

 6

6. Managing Evolution in State Machines

When components evolve, there are two main approaches to consider, specialization
or parameterization. Specialization is effective when there are a relatively small
number of changes to be made, so that the number of specialized classes is
manageable. However, in multi-version system and product line evolution, there can
be a large degree of variability. Consider the issue of variability in control classes that
are modeling using state machines [Harel96], which can be handled either by using
parameterized state machines or specialized state machines. Depending on whether
the design uses a centralized or decentralized approach, it is likely that there will be
several different state dependent control components, each modeled by its own state
machine. The following discussion relates to the evolution within a given state
dependent component.
 To capture state machine variability due to evolution, it is necessary to specify
optional states, events and transitions, and actions. A further decision that needs to be
made when using state machines to model variability is whether to use state machine
inheritance or parameterization. The problem with using inheritance is that a different
state machine is needed to model each alternative or optional feature, or feature
combination, which rapidly leads to a combinatorial explosion of inherited state
machines. It is often more effective to design a parameterized state machine, in which
there are feature-dependent states, events, and transitions. Optional transitions are
specified by having an event qualified by a feature condition, which guards entry into
the state. Thus Minute Pressed is a feature dependent transition guarded by the feature
condition minuteplus in Fig. 4. Similarly, there can be feature-dependent actions, such
as Switch On and Switch Off in Fig. 4, which are only enabled if the light feature
(Fig. 4) condition is True. Thus the feature condition is True if the optional feature is
selected for a given product line member, and false if the feature is not selected. The
Beep action is controlled in a similar way. The impact of feature interactions can be
modeled very precisely using state machines through the introduction of alternative
states or transitions.

Figure 4 Feature Dependent State Transitions and Actions

 7

Designing parameterized state machines is often more manageable than designing
specialized state machines. The feature dependent Microwave Oven state machine
provides the overall coordination for the oven since it determine what actions, many
of which are feature dependent, are executed and when.

7. Evolutionary Component-Based Software Architecture

A software component’s interface is specified separately from its implementation and,
unlike a class, the component’s required interface is designed explicitly in addition to
the provided interface. This is particularly important for architecture-centric
evolution, since it is necessary to know the impact of the change to a component on
all components that interface to it.
 This capability for modeling component-based distributed software architectures is
particularly valuable in evolutionary system and product line engineering, to allow the
development of kernel, optional and variant components. There are various ways to
design components. It is highly desirable, where possible, to design components that
are “plug-compatible”, so that the required port of one component is compatible with
the provided ports of other components to which it needs to connect [Gomaa05].
When plug-compatible components are not practical, an alternative component design
approach is component interface inheritance [Gomaa05].
 Consider the case in which a producer component needs to be able to connect to
different alternative consumer components in different product line members, as
shown in Fig. 5. The most desirable approach, if possible, is to design all the
consumer components with the same provided interface, so that the producer can be
connected to any consumer without changing its required interface. In Fig. 5, the
control component Microwave Control (which executes the state machine in Fig. 4)
can be connected to either version of the Microwave Display component (which
correspond to default and alternative features). The default One-Line Microwave
Display and the variant Multi-Line Microwave Display have the same interface,
although there is one operation depicted in the IDisplay interface, which is feature
dependent and is in fact only realized by the Multi-Line Microwave Display
component.
 Fig. 6 shows the base component-based software architecture for the Microwave
Oven. The base architecture supports the Microwave Oven System use case model
with the Cook Food use case before evolution and the introduction of any variation
points. The architecture is based on the centralized control pattern [Gomaa11], in
which there are input components such as Door and Keypad components, the
centralized Microwave Control component, and output components such as the
Microwave Display component.

 8

Figure 5 Design of Plug-compatible Components

Figure 6 Base Component-Based Software Architecture

Key
port
provided
interface
required
interface

concurrent
component

«kernel»
«control component»

MicrowaveControl

RDisplay

IDisplay
IDisplay

PDisplay

«variant»
«output component»

MultiLineMicrowaveDisplay

PDisplay

RDisplay

«variant»
«output component»
MicrowaveDisplay

«kernel»
«control component»

MicrowaveControl

 9

Fig. 7 depicts two Feature dependent optional components, Lamp and Beeper, and
specifies their interfaces. An evolved software architecture, which includes these two
optional components as well as the variant Multi-Line Microwave Display component
is shown in Fig. 8.
 The control component, Microwave Control, provides the overall coordination for
the architecture by executing feature dependent actions given by the Microwave
Control state machine (Fig. 4). Microwave Control sends feature dependent messages
correspond to these feature dependent actions. Thus, if the Light feature is selected for
an application, then the Light feature condition is set to True, resulting in the feature
dependent actions Switch On and Switch Off being enabled when the transitions into
and out of Cooking state take place. Microwave Control will send corresponding
feature dependent messages to the Light component when these actions occur, which
will invoke the Switch On and Switch Off operations respectively in the Light
component Fig. 7).

8. Conclusions

This paper has described an evolutionary software development approach, which uses
software product line and feature modeling concepts for evolving multi-version
systems. The multi-version systems constitute a family of systems with some common
functionality and some variable functionality. With the approach described in this
paper, the goal is to model all versions of the system, including previously deployed
systems as a software product line. The addition of optional and alternative features
necessitates the adaptation of the original software architecture by designing optional
and variant components to realize these features.
 Future work involves exploring further how to incorporate the notion of history,
i.e., the sequence of evolution. This could be addressed by assigning each application
a version number (suitable for linear evolution) and/or providing links between
successive versions (suitable for branching evolution) of the evolving system. To
ensure consistency among the multiple views of an evolving system, it is desirable to
have an underlying multiple view meta-model. A multiple view meta-model for
product lines has been developed [Gomaa08]. Future work involves extending this
meta-model to incorporate concepts of software evolution.
 This paper has described evolutionary design of component-based software
architectures at design time. It is also possible to extend this research to address
dynamic run-time adaptation [Gomaa07] of the evolved system. Although the paper
has described feature-based evolution of component-based software architectures, the
concepts can also be applied to service-oriented architectures [AbuMatarGomaa11].

Figure 7 Feature dependent Optional Components

IBeeper

ILamp

initialize ()
switchOn ()
switchOff ()

«interface»
ILamp

{feature = Lamp}

initialize ()
beep ()

«interface»
IBeeper

{feature = Beeper}

PBeeper

PLamp

«optional»
«output component»

LampComponent

«optional»
«output component»
BeeperComponent

 10

Figure 8 Evolutionary Component-Based Software Architecture

References
[Abu-Matar10] M. Abu-Matar and H. Gomaa, "Feature Based Variability for Service Oriented
Architectures", Proc. Wkshp. on Variability in Software Architecture, Boulder, CO, June 2011.
[Boehm88] Boehm, B., “A Spiral Model of Software Development and Enhancement,” IEEE
Computer, May 1988.
[Clements02] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns,
Addison Wesley, 2002.
[Gomaa05] Gomaa, H., “Designing Software Product Lines with UML: From Use Cases to
Pattern-based Software Architectures”, Addison-Wesley, 2005.
[Gomaa06] H. Gomaa, “A Software Modeling Odyssey: Designing Evolutionary Architecture-
centric Real-Time Systems and Product Lines”, Proc. 9th International Conf. on Model-Driven
Engineering, Languages, and Systems, Genova, Italy, October 2006.
[Gomaa07] H. Gomaa and M. Hussein, “Model-Based Software Design and Adaptation”, Proc
Intl. Wkshp. on Sftwr. Eng. for Adaptive and Self-Managing Systems, Minneapolis, May 2007.
[Gomaa08] H. Gomaa and M.E. Shin, “Multiple-View Modeling and Meta-Modeling of
Software Product Lines”, Journal of IET Software, Vol. 2, Issue 2, pp. 94-122, April 2008.
[Gomaa11] H. Gomaa, “Software Modeling and Design: UML, Use Cases, Patterns, and
Software Architectures”, Cambridge University Press, February 2011.
[Harel96] Harel, D. and E. Gary, “Executable Object Modeling with Statecharts”, Proc. 18th
International Conference on Software Engineering, Berlin, March 1996.
[Kang90] Kang K. C. et. al., “Feature-Oriented Domain Analysis,” Technical Report No.
CMU/SEI-90-TR-21, Software Engineering Institute, November 1990.
[Lehman80] M.M. Lehman, "Programs, Life Cycles, and Laws of Software Evolution", Proc.
IEEE 68 (9): 1060–1076, 1980.
[MensDemeyer08] T. Mens, S. Demeyer (Eds.) Software Evolution. Springer, 2008.
[Mens08] T. Mens, Introduction and Roadmap: History and Challenges of Software Evolution.
In Software Evolution, Springer, 2008.
[Pohl05] K. Pohl et al, “Software Product Line Engineering: Foundations, Principles and
Techniques”, Springer, 2005.

