
Reflections on, and predictions for, support systems for
the development of programs

Cliff B. Jones

Computing Science
Newcastle University

ASE 2008-09-19

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 1 / 45

Instead of conventional “Thank you for invite”

Huge Thank you!

My first time at an ASE:
see real conversation between different approaches!

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 2 / 45

Contents

1 Background

2 Arguments

3 An example: ACMs
Where to start – a specification
Splitting atoms (gently) in abstract state
Retaining less history
The four-slot representation
Conclusions

4 Overall conclusions/summary

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 3 / 45

Me + FM support tools

contributed to transition from VDL to VDM (language description)
I we wrote large (including PL/I) definitions with minimal tooling
I experience: problems mainly hit us when changes made!
I originated much of “VDM” as for program development

used support systems since Jim King’s “Effigy”
I I worry they lock user in to one method
I suspect they constrain thought
I (but used Effigy for top-down design!)

“Formal Development Support System” IBM Hursley (1970s)
I it was so rigid, even I couldn’t use it!

more public is the mural system (below) Manchester (1980s)

observed use of many TP systems
I have seen people “hack” without understanding what they are proving

Rodin Toolset (below)

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 4 / 45

mural [JJLM91]

order of proof steps was very flexible

a “logical frame” (e.g. used for LPF)

focus on building theories

but only minimal automatic support

best seen as a UI experiment

built from VDM spec

implemented in SmallTalk’80 (turned out to be a mistake)

kept multiple proof attempts — difficult to delete!

book now on the web

yes, it contains the VDM spec (evolved)

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 5 / 45

Rodin ToolSet

(EU) project developed tools “Rodin ToolSet”

open source - available from SourceForge

kernel + plugins

Eclipse based

one key advantage: background proving

also: nice work on computing impact of changes (minimise re-proof)

now being used in the (EU) DEPLOY IP project

“road map” discusses plans; invites input

tool engenders an approach: everything in Contexts/Machines

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 6 / 45

Contents

1 Background

2 Arguments

3 An example: ACMs
Where to start – a specification
Splitting atoms (gently) in abstract state
Retaining less history
The four-slot representation
Conclusions

4 Overall conclusions/summary

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 7 / 45

Claim: (software) design is hard

(Yes, I know this is stating the obvious!)

requires a strange mixture of important (big) insights and detailed
symbol pushing

layers of abstraction (backed up by formal rules) are all we’ve got!

(for many reasons) we must take our own medicine
I reluctance to so do: Effigy, . . .

we must be seen to take our own medicine

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 8 / 45

Belief: there is a long way to go

no current “formal methods support system” gives software engineers
anything like the support given to hardware designers by their CAD
systems

destruction of design history is intellectual vandalism

current programming languages are ill-suited to documenting design

have to stop trying to build “complete” support systems

build/link components

care! there are pitfalls here (e.g. different logics)

“whole” system includes (IMHO) tracking all versions

. . . and all tests on all versions

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 9 / 45

Thesis: level of generality

there are all sorts of things I’d like to prove

mistake to fix on one method (example below)

but want more than a general purpose TP system

there is no point in proving all of the verification conditions for one
version of a program and then running a different (buggy) version —
so systems have to control all versions, tests, verifications, changes
etc.

might call it a “method frame”

this can present problems diagnostics (and performance)

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 10 / 45

My hope for AI contribution

(discussions with Ireland/Bundy)

they planning to “mine proofs”

loses info on how created (order) — cf. mural view

info on failed attempts long discarded!

at detailed level, can’t trace what “copied” from where

system learns high-level strategy (not tactics?)

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 11 / 45

Argument: don’t get locked into “legacy code” corner

(I’m aware there are a lot of “testing” folk at ASE)

BTW: I started out in IBM’s Product Test division

ideas like “abstract interpretation” (“symbolic execution”): making
real progress for non-trivial systems

handling “legacy” systems presents another set of challenges — here
the aim is to accumulate information such as avoidance of certain
sorts of bad behaviour; again, such hard won information should not
be discarded

even if can’t work on “green fields” projects, look at rational
reconstructions

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 12 / 45

Theses

model checking not only needs “abstraction” but it should be
equipped to use ones that are available from design

there are enough common problems between the various sorts of tool
that interfacing components is imperative — apart from simple
syntactic interfaces

. . . much in the style of the EPFL paper (Beyer?) Wednesday
morning (“predicate abstraction” + “explicit analysis”)

such integration can pose hard semantic challenges

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 13 / 45

Idea: direct support for SOS
was almost subject of ASE conf paper (now [HJ08])

do not have complete axiom systems for any widely used
programming language (by a big margin)

might therefore have to reason from, say, an operational semantics

our paper builds on mural approach

obviously use Floyd/Hoare-like rules is applicable

in fact, would be nice if this system supports justification of such rules

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 14 / 45

Broader worries: industrial perspective

getting the “right” specification [JHJ07] for a non-trivial system is at
least as much an issue as showing that a design matches its
specification

even during design, everything will change (in fact, designing for
flexibility is often more important than aiming for efficiency) —
systems must maximise what is preserved over such changes

we have to build our tools so that they can interface with whatever
in-house engineering systems are being used by organisations we
expect to adopt our formal tools

. . .

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 15 / 45

Contents

1 Background

2 Arguments

3 An example: ACMs
Where to start – a specification
Splitting atoms (gently) in abstract state
Retaining less history
The four-slot representation
Conclusions

4 Overall conclusions/summary

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 16 / 45

Key abstractions
Argument: flexibility on methods

Pre/post-conditions (as in VDM/B/. . .)
I design by sequential “operation decomposition rules”
I Floyd/Hoare-like rules (coping with relational post-conditions)

Rely/Guarantee “thinking”
I not (just) a specific set of rules
I show importance of “frames” (cf. Separation Logic)
I using “auxiliary variables”

Abstract objects
I choice of abstract data objects key for specifications
I data “reification” (classic-VDM / Nipkow’s rule)
I link with R/G development

“fiction of atomicity”
I “splitting (software) atoms safely” [Jon07]
I cf. database transactions [JLRW05], . . .
I cf. POBL [Jon96]

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 17 / 45

While (operation decomposition) rule

While-I

S sat (P ∧ b, P ∧W)
P ⇒ δl(b)
mk-While(b, S) sat (P, P ∧ ¬ b ∧W ∗)

There’s no reason why a system should hardwire the (standard) Hoare rule
the rules should be data (to a method frame)

“posit and prove” is one way of supporting design;
“Verified by Construction” has been shown to be viable for large systems

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 18 / 45

One R/G rule

Par-I

{P,R ∨ Gr} ` sl sat (Gl,Ql)
{P,R ∨ Gl} ` sr sat (Gr,Qr)
Gl ∨ Gr ⇒ G
↼−
P ∧Ql ∧Qr ∧ (R ∨ Gl ∨ Gr)∗ ⇒ Q

{P,R} ` mk-Par(sl, sr) sat (G,Q)

. . . and there are lots more where this one came from

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 19 / 45

Subtle link between R/G and data reification
cf. [Jon07]

in FINDP
I we have t ← min(t , local) in n parallel processes
I assuming we don’t want to “lock” t
I need a representation that preserves R/G conditions
I simple to represent as t as min(et , ot)

SIEVE
I we have to remove an element from a set s
I assuming we don’t want to “lock” s (big!)
I need a representation that preserves R/G conditions s ⊆↼−s
I (less obvious) represent s as a bit vector

Simpson
I extremely interesting
I my claim: this is the essence of Simpson’s contribution

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 20 / 45

ACMs: [JP08]
Communication (Atomic?)

Write(42)  x := Read() 

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 21 / 45

ACMs
Atomic and (trying for) Asynchronous

Write 

Read() 

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 22 / 45

Simpson’s algorithm

Simpson’s algorithm

several other folk still working on this

run through my “rational reconstruction”
I “explanation” via layers of abstraction

essential to get the big steps right before detailed proof

apologies for so much argument about eight lines of code . . .

formulae in small fount not meant to be read!

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 23 / 45

Specification

Σa :: data-w : Value∗

fresh-w : N
hold -r : N

inv (mk -Σa(data-w , fresh-w , hold -r)) 4
fresh-w , hold -r ∈ {1..len data-w} ∧ hold -r ≤ fresh-w

σa
0 = mk -Σa([x], 1, 1)

while true do
start-Write(v : Value): data-w ← data-w y [v];
commit-Write(): fresh-w ← len data-w

od
while true do

start-Read(): hold-r ← fresh-w ;
end-Read()r : Value: r ← data-w(i) for some i ∈ {hold-r..fresh-w}

od

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 24 / 45

Example 3

start-Read() .. mk-Σa([x], 1, 1)
start-Write(y) .. mk-Σa([x, y], 1, 1)
commit-Write() .. mk-Σa([x, y], 2, 1)
start-Write(z) .. mk-Σa([x, y, z], 2, 1)
commit-Write() .. mk-Σa([x, y, z], 3, 1)
end-Read() .. r ∈ {x, y, z}
start-Read() .. mk-Σa([x, y, z], 3, 3)
end-Read() .. r = z

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 25 / 45

Specification in terms of four sub-operations (Write)
Atomic operations — therefore pure pre/post specification

while true do
start-Write(v : Value): data-w ← data-w y [v];
commit-Write(): fresh-w ← len data-w

od
||
...

Write(v : Value)
start-Write(v : Value)

wr data-w

post data-w =
↼−−−−
data-w y [v]

commit-Write(v : Value)
rd data-w
wr fresh-w
pre data-w(len data-w) = v
post fresh-w = len data-w

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 26 / 45

Specification in terms of four sub-operations (Read)

...
||
while true do

start-Read(): hold -r ← fresh-w ;
end -Read()r : Value: r ← data-w(i) for some i ∈ {hold -r ..fresh-w}

od

Read()r : Value
local hold-r : N
start-Read()

wr hold-r
rd fresh-w
post hold-r = fresh-w

end-Read()r : Value
rd data-w, fresh-w
post ∃i ∈ {hold-r..fresh-w} · r = data-w(i)

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 27 / 45

General messages

note “algorithmic” specification

“fiction of atomicity”
I but single “atomic” variable does not cover all behaviour

“frames” (for rd/wr access)
I plus “local”

data abstraction

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 28 / 45

Splitting atoms in Σa (Write)
Accept overlap (only read/write) — therefore rely/guarantee

Write(v : Value)
start-Write(v : Value)

rd fresh-w
wr data-w
rely fresh-w =

↼−−−−
fresh-w ∧ data-w =

↼−−−−
data-w

guar {1..fresh-w}� data-w = {1..fresh-w}�
↼−−−−
data-w

post data-w =
↼−−−−
data-w y [v]

commit-Write(v : Value)
rd data-w
wr fresh-w
pre data-w(len data-w) = v
rely fresh-w =

↼−−−−
fresh-w ∧ data-w =

↼−−−−
data-w

post fresh-w = len data-w

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 29 / 45

Splitting atoms in Σa (Read)

Read()r : Value
start-Read()

rd fresh-w
wr hold -r
rely hold -r =

↼−−−
hold -r

post hold -r ∈ {
↼−−−−
fresh-w , fresh-w}

end -Read()r : Value
rd data-w , fresh-w , hold -r
rely hold -r =

↼−−−
hold -r∧∀i ∈ {hold -r ..

↼−−−−
fresh-w}·data-w(i) =

↼−−−−
data-w(i)

post ∃i ∈ {hold -r ..
↼−−−−
fresh-w} · r =

↼−−−−
data-w(i)

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 30 / 45

General messages

phasing
I makes clear start-Write cannot interfere with commit-Write
I avoids implications in rely conditions

frames plus phasing significantly simplify R/G assertions

cf. rely-start-Write on Σa above

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 31 / 45

Retaining less history
A data reification exercise — still very general

Σi :: data-w : X m−→ Value
fresh-w : X
hold -r : X
hold -w : X

σi
0 = mk -Σi({α 7→ x}, α, α, α)

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 32 / 45

Relating Σi to Σa

Using Nipkow’s rule

r(σa
1 , σ

i
1) ∧ post i(σi

1, σ
i
2) ⇒ ∃σa

2 ∈ Σa · posta(σa
1 , σ

a
2) ∧ r(σa

2 , σ
i
2)

r : Σa × Σi → B

r(mk -Σa(data-wa , fresh-wa , hold -ra),
mk -Σi(data-w i , fresh-w i , hold -r i , hold -w i)) 4

rng data-w i ⊆ elems data-wa ∧
data-wa(fresh-wa) = data-w i(fresh-w i) ∧
data-wa(hold -ra) = data-w i(hold -r i)

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 33 / 45

Specifications of the sub-operations on Σi

Still overlapped — still rely/guarantee

Write(v : Value)
local hold-w : X
start-Write(v : Value)

rd hold-r, fresh-w
wr data-w, hold-w

rely fresh-w =
↼−−−−
fresh-w ∧ data-w =

↼−−−−
data-w

guar {↼−−−hold-r, hold-r}� data-w = {↼−−−hold-r, hold-r}�
↼−−−−
data-w

post hold-w ∈ (X − {fresh-w,
↼−−−
hold-r, hold-r}) ∧ data-w =

↼−−−−
data-w † {hold-w 7→ v}

commit-Write(v : Value)
rd data-w, hold-w
wr fresh-w
pre data-w(hold-w) = v

rely fresh-w =
↼−−−−
fresh-w ∧ data-w =

↼−−−−
data-w

post fresh-w = hold-w

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 34 / 45

Specifications of the sub-operations on Σi

Read()r : Value
start-Read()

rd fresh-w
wr hold-r

rely hold-r =
↼−−−
hold-r

post hold-r ∈ {↼−−−−fresh-w, fresh-w}
end-Read()r : Value

rd hold-r, data-w

rely hold-r =
↼−−−
hold-r ∧ data-w(hold-r) =

↼−−−−
data-w(hold-r)

post r = data-w(hold-r)

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 35 / 45

General messages

simpler R/G because of read/write frames

data reification
I (potentially) reducing non-determinism
I use of VDM’s other reification rule

still have “bold” atomicity assumptions
I couldn’t update data-w atomically on any reasonable machine

still work to be done

role of data reification in achieving rely conditions

Simpson’s representation crucial

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 36 / 45

The four-slot representation
Focus on Simpson’s inspiration

Σr :: data-w : P × S m−→ Value
pair -w : P
pair -r : P
slot-w : P m−→ S
wp-w : P
ws-w : S
rs-r : S

where (key assumptions about granularity (ρ)):

P ,S = Token-set

P = S
card P = 2
ρ(i) 6= i

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 37 / 45

Specifications of the sub-operations on Σr

Write(v : Value)
local wp-w : P
local ws-w : S
start-Write(v : Value)

rd pair-r, slot-w
wr data-w

rely slot-w =
↼−−−
slot-w ∧ data-w =

↼−−−−
data-w

guar {(↼−−−pair-r, slot-w(
↼−−−
pair-r)), (pair-r, slot-w(pair-r))}� data-w =

{(↼−−−pair-r, slot-w(
↼−−−
pair-r)), (pair-r, slot-w(pair-r))}�

↼−−−−
data-w

post wp-w = ρ(
↼−−−
pair-r) ∧ ws-w = ρ(slot-w(wp-w)) ∧ data-w(wp-w,ws-w) = v

commit-Write()
wr pair-w, slot-w

rely pair-w =
↼−−−−
pair-w ∧ slot-w =

↼−−−
slot-w

guar slot-w(pair-r) =
↼−−−
slot-w(pair-r)

post slot-w(wp-w) = ws-w ∧ pair-w = wp-w

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 38 / 45

Satisfies guarantee conditions (as well as post)

Write(v : Value)
local wp-w : P
local ws-w : S

wp-w ← ρ(pair -r);
ws-w ← ρ(slot-w(wp-w));
data-w(wp-w ,ws-w)← v ;
slot-w(wp-w)← ws-w ;
pair -w ← wp-w

Read()r : Value
local rs-r : S

pair -r ← pair -w ;
rs-r ← slot-w(pair -r);
r ← data-w(pair -r , rs-r)

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 39 / 45

Conclusions (on example)

all at ASE probably accept “refinement from abstractions”

“splitting atoms” – a new/old formal addition

subsidiary points
I rely/guarantee “thinking”
I remember frame descriptions
I combination with data reification
I link with “phasing”
I “auxiliary variables” + Nipkow’s rule
I tool support
I try to avoid “coding logic into values”

these ideas are not (all) in any single “method”

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 40 / 45

Contents

1 Background

2 Arguments

3 An example: ACMs
Where to start – a specification
Splitting atoms (gently) in abstract state
Retaining less history
The four-slot representation
Conclusions

4 Overall conclusions/summary

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 41 / 45

(My) general conclusions

OK, tools do matter

no one method solves covers all problems

must design interworking components
I XML is not the answer!
I generality: diagnostics via rules?
I . . . performance via abstract interpretation?

I hope to explore “method frame”
I flexibility
I way to combine

GUI does matter
I view onto huge data structure
I much of which generated
I quick/easy check to avoid wasting time trying to prove non-theorems?

Programming Languages — part of the problem (not solution)
I “must try harder”
I old TOPD question

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 42 / 45

Personal preferences

(post this meeting) I still plan to work on Verification!

a couple more examples
I I got into “formal methods” (1969) because of PL/I-F compiler mess
I my attempts to prove extant programs always failed
I concede: I didn’t have the good tools available here at ASE 2008
I but: finding errors late still leaves “scrap and rework” issue

real message: continue to search for synergy
I I happen to be on Verification side of the fence
I I do see the payoff with model checking etc.
I Confess: VxC suites my personal research tastes!

. . . and I hope to work with AI people!

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 43 / 45

References

John R. D. Hughes and C. B. Jones.

Reasoning about programs via operational semantics: Requirements for a support system.
Automated Software Engineering, 10.1007/s10515-008-0036-6, 2008.

Cliff B. Jones, Ian J. Hayes, and Michael A. Jackson.

Deriving specifications for systems that are connected to the physical world.
In Cliff B. Jones, Zhiming Liu, and Jim Woodcock, editors, Formal Methods and Hybrid Real-Time Systems: Essays in
Honour of Dines Bjørner and Zhou Chaochen on the Occassion of Their 70th Birthdays, volume 4700 of Lecture Notes in
Computer Science, pages 364–390. Springer Verlag, 2007.

C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore.

mural: A Formal Development Support System.
Springer-Verlag, 1991.

C. B. Jones, D. Lomet, A. Romanovsky, and G. Weikum.

The atomicity manifesto.
Journal of Universal Computer Science, 11(5):636–650, 2005.

C. B. Jones.

Accommodating interference in the formal design of concurrent object-based programs.
Formal Methods in System Design, 8(2):105–122, March 1996.

C. B. Jones.

Splitting atoms safely.
Theoretical Computer Science, 357:109–119, 2007.

Cliff B. Jones and Ken G. Pierce.

Splitting atoms with rely/guarantee conditions coupled with data reification.
In ABZ2008, volume LNCS 5238, pages 360–377, 2008.

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 44 / 45

Plug!

ASE community might also like
VSTTE (because the “E” is for “experiments”)
Toronto, October 6th–9th

http://qpq.csl.sri.com/vsr/vstte-08

Cliff B. Jones (Newcastle) Reflections on, and predictions for, support systems for the development of programsASE 2008-09-19 45 / 45

	Background
	Arguments
	An example: ACMs
	Where to start -- a specification
	Splitting atoms (gently) in abstract state
	Retaining less history
	The four-slot representation
	Conclusions

	Overall conclusions/summary

