
Swarm Verification

Gerard J. Holzmann

9/18/08 2

4GB

64KB

16 bit 32 bit 64 bit

Memory

speed

4 MHz

4 GHz

2001 20211981

trends in cpu memory and clock-speed

gap

the switch to
multi-core

RAM
256 GB
Speed

to leverage the new trend,
we should try to find ways to
exploit massive parallelism

X 256 CPUs

(twenty year intervals)

9/18/08 3

time to fill N GB of RAM

seconds

[Spin in bitstate mode]
storing a relatively large number of system states
into memory at a rate of 104 to 106 states/second

average

N=10

1 day

1 hour
more memory is
no longer always
more useful

if only because
life itself is finite…

9/18/08 4

some observations

• at a fixed clock-speed, there is a limit to the
largest problem size we can handle in 1 hour
(day / week)
– no matter how much memory we have (RAM

or disk)
– even a machine with “infinite memory” but

“finite speed” will impose such limits

• in some cases we can increase speed by using
multi-core algorithms
– but do 10n CPUs always get a 10n x

speedup?
– it will depend on the CPU architecture

(NUMA/UMA)
– do we know what the CPU architecture will

be for large multi-core machines (think 1,000
CPUs and up)?

9/18/08 5

CPU

CPU
SHUB

MEM

FS
B

CPU

CPU

FSBSHUB

MEM

Altix C-Brick
4 CPUs

(2x dual-cpu)
2 NUMA links

up to 16 GB per
C-brick

NUMA

0.4---3.2 Gbps

4 Altix
C-Bricks:
16 CPUs

64 CPUs NUMA interconnect
(non-uniform memory access)

16 C-Bricks = 64 CPUs
max 16x16=256 GBAltix R-Brick Altix R-Brick

Altix R-Brick Altix R-Brick

Altix R-Brick

Altix R-Brick

Altix R-Brick

Altix R-Brick
Source: Proc. Linux Symp. June 2003, Ottawa, Canada, pp.83-95.
Ray Bryant and John Hawkes, “Linux Scalability for Large NUMA Systems”

on this architecture, we can expect to see
performance changes at 2, 4, 16, and 64 CPU boundaries

9/18/08 6

shared memory access (2 GB)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

1 3 4 5 7 8 12 12 16

nr of processes

se
co

nd
s

1 2 3 4 5 6 7 8 10 12 14 16 18

shared memory

measurement on the SGI Altix
each bar records the runtime of 1 of N processes

2 GB per process (left) or 2 GB shared memory (right)

separate memory

0.00

100.00

200.00

300.00

400.00

500.00

600.00

4/
8/

2

6/
12

/2

7/
14

/2

8/
15

/1
.8

15
/1

5/
1

17
/1

7/
1

se
co

nd
s

using any number of processes ≥ 8
leads to a major performance hit

4 5 6 7 8 16 18#procs:

all memory references local

(uncertainty in measurements: we have no control over
how the scheduler assigns processes to cpus)

(note, runtimes measured tend to
match in multiples of 2 or 4)

with shared memory, some processes
are always faster, likely cpus near the data

but, once the faster processes terminate, the
slow processes don’t migrate to the data…groups of 4 processes

tend to get similar performance
(i.e., 1 C-brick)

9/18/08 7

the infinitely large problem
and the infinitely large machine
• there will always be problems that

require more time to verify than we are
willing (or able) to wait for

– how do we best use finite time to handle
large problems?

• an example of an “infinitely large
problem:” a Spin Fleet Architecture
model from Ivan Sutherland & students
(courtesy Sanjit Seshia)
– known error state is just beyond reach

of a breadth-first search (and symbolic
methods) – error is too deep

– error is on “wrong” side of the DFS tree
– a bitstate search either fills up memory

or exhausts the available time before
the error state is reached

– how do we maximize our chances of
finding errors like this?

9/18/08 8

byte pos = 0;

int val = 0;

int flag = 1;

active proctype word()

{ /* generate all 32-bit values */

end: do

:: d_step { pos < 32 -> /* leave bit 0 */ flag = flag << 1; pos++ }

:: d_step { pos < 32 -> val = val | flag; flag = flag << 1; pos++ }

od

}

never {/* check if some user-defined value N can be matched */

do

:: assert(val != N)

od

}

a simple, large search problem

232 reachable states, 24 byte per state
100 GB to store the full state space

assume we have only 64 MB to do the search
0.06 % of what is needed to store everything

0

0

0

1

1

1

9/18/08 9

finding needles in haystacks
• 232 reachable states, 24 bytes per state

– 100 GB to store the full state space
– 64 MB available (0.06 % of 100 GB)

• a search problem:
– randomly pick 100 32-bit numbers
– how many of these numbers can we find (match) with different

search techniques?
– the odds of finding any of the numbers with a standard

exhaustive search are not very good…

• a first candidate: bitstate hashing
– consumes ~0.5 byte per state on average: 232×0.5 ~ 2 GB
– 64MB (226) is 1/32 of what is needed to store all bit-states
– should find matches for ~3% of the 100 numbers

9/18/08 10

bitstate dfs –w29
229 bits = 226 bytes = 64 MB

$ spin -DN=-1 –a word.pml

$ cc –O2 –DSAFETY –DBITSTATE –o pan pan.c

$./pan –w29

...

1.4849945e+08 states, stored (3.46% of all 232 states)

...

hash factor: 3.61531 (best if > 100.)

bits set per state: 3 (-k3)

...

pan: elapsed time 150 seconds

this search did not find a match for the target number -1

but, if we repeat the search for each of the 100
numbers we can expect maybe 3 matches

9/18/08 11

let’s try it

$ > out

$ for r in `cat ../numbers` # 100 separate runs

$ do

spin -DN=$r -a word.pml

cc -O2 -DSAFETY -DBITSTATE –o pan pan.c

./pan –w29 >> out

done

$ grep “assertion violated” out | sort –u | wc -l

2
two numbers were matched: -1904, 30754

can we do better?

9/18/08 12

but why do 100 runs, when we can do 1
active proctype word()
{
end:do

:: d_step { pos < 32 -> /* leave bit 0 */ flag = flag << 1; pos++ }
:: d_step { pos < 32 -> val = val | flag; flag = flag << 1; pos++ }
od

}

never {
do
:: d_step { pos == 32 ->

if
:: (val == -29786)
|| (val == -8747)
|| (val == 234)
|| ...
|| (val == -9934) ->

c_code { printf(“assertion violated %d\n”, val); }
:: else
fi }

:: else
od

} runtime goes from 100 x 150 seconds (> 4 hours)
down to 180 seconds

(but note that it removes potential parallelism)

9/18/08 13

we’ll use this run as a reference
$ spin -a word_100.pml

$ cc -O2 -DSAFETY -DBITSTATE –o pan pan.c

$./pan –w29 –k3 –h0

We can try adding search diversity
to see if we can increase problem coverage:

1. change hash-polynomials (default is –h0, can use –h1..32)
2. change the number of hash-functions (default is –k3, can use any k)
3. change the size of the hash-array (up to 64MB: can use -w1..29)
4. change search algorithm… (we’ll come back to this)

Each variation defines an independent run, that can be
executed completely in parallel – without any sharing.

Does any of this really buy us anything?

the challenge: increase coverage
above 2-3%, without increasing
memory or time…

9/18/08 14

changing hash-polynomials

$ > out

$ for h in 0 5 11 17 # possible choices: 0..32

do

./pan –w29 –k3 –h$h >> out

done

$ grep “assertion violated” out | sort –u | wc –l

6

this tripled the number of matches
by varying 1 parameter

we defined 4 independent runs

what if we also vary k and w ?

varying w is an older technique,
called “iterative search refinement” in [HS99]

9/18/08 15

creating 160 runs
by varying 3 parameters
$ > out

$ for w in 20 21 22 23 24 25 26 27 28 29 # 10 bitstate sizes

do

for k in 1 2 3 4 # 1 to 4 hash-functions

do

for h in 0 5 11 17 # 4 hash-polynomials

do

./pan –w$w –k$k –h$h >> out

done

done

done

$ grep “assertion violated” out | sort –u | wc –l

14 we now locate 14% of our 100 search targets

all 160 runs are independent and can be executed
in parallel – most runs are very fast

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

29 28 27 26 25 24 23 22 21 20 19

-wN

se
co

nd
s

time T with shrinking W →

9/18/08 16

we can also vary the search algorithm
three simple methods:

1. standard depth-first search our reference

2. reverse the order for exploring transitions
within a process

• compile pan.c with –D_T_REVERSE

3. add search randomization on the transition
selections within a process

• compile pan.c with –DRANDOMIZE=N
• in our case, we have just 2 transitions, but the choice

between them is made 32 times in each of the 4 billion
possible executions

• can use different seeds to create any number of variants

each search variant can be expected
to perform roughly the same,
but each should hit different targets, so
that all variants combined can outperform
any one variant used separately.

9/18/08 17

we can use this to define a large nr of runs
e.g., 30 x 160 = 4,800 parallel runs
for x in dfs rdfs 433 33461 593 139 `seq 101 3 170`
do

case "$x" in
dfs) cc -O2 -DSAFETY -DBITSTATE -o pan pan.c ;;
rdfs) cc -O2 -DSAFETY -DBITSTATE -DT_REVERSE -o pan pan.c ;;
*) cc -O2 -DSAFETY -DBITSTATE -DRANDOMIZE=$x -o pan pan.c ;;
esac

... [the earlier script,
with 160 variations
for each algorithm]

done

the complete set can still be run in 180 s
on a compute grid / cloud / mesh / cluster

keep a few hundred cpus busy…
(something we to be able to do to
to solve very large problem sizes
in logic model checking very fast)

9/18/08 18

Increasing Problem Coverage
with Search Diversity

1

10

100

1000

1 3 5 7 9 11 13 15 17 19 21 23 25
Each Iteration is a set of 160 Runs

In
di

vi
du

al
 a

nd
 C

um
ul

at
iv

e
N

um
be

r
of

 M
at

ch
es

New Matches Cumulative # Matches

98 matches

each of 30 iterations is a set of 160 runs

no run uses more than 64 MB: 0.06% of the 100GB needed
no run takes more than 180 seconds
no run finds more than 2 targets
all runs are independent, and can be executed in parallel

9/18/08 19

there are more ways to diversify the
search...
4. use embedded C code to define a user-controlled selection method

to permute the transitions selections
5. reverse the order in which processes themselves are interleaved

• compile pan.c with –DREVERSE (not helpful here, since we have just 1
process)

6. breadth-first search
• compile with –DBFS (not helpful here, since all targets are at the same

level)
7. multi-core search

• compile with –DNCORE=N (not explored here)
8. different types of bounds

• Bounded context switching (as proposed by Shaz Qadeer -- to be
implemented)

• Depth-Bounded Search (varying -m…)
• Bounded Storage (e.g., 2,3,4-byte hash-compact variations)

9/18/08 20

the swarm tool:
a new preprocessor for Spin

$ swarm –F config.lib –c6 > script
swarm: 456 runs, avg time per cpu 3599.2 sec
$ sh ./script

ranges
w 20 32 # min and max -w parameter
d 100 10000 # min and max search depth
k 2 5 # min and max nr of hash functions

limits
cpus 128 # nr available cpus
memory 64MB # max memory to be used; recognizes MB,GB
time 1h # max time to be used; h=hr, m=min, s=sec
vector 500 # bytes per state, used for estimates
speed 250000 # states per second processed
file word_100.pml # the spin model

compilation options (each line defines a search mode)
-DBITSTATE # standard dfs
-DBITSTATE -DREVERSE # reversed process ordering
-DBITSTATE -DT_REVERSE # reversed transition ordering
-DBITSTATE -DRANDOMIZE=123 # randomized transition ordering
-DBITSTATE -DRANDOMIZE=173573 # ditto, with different seed
-DBITSTATE -DT_REVERSE -DREVERSE # combination
-DBITSTATE -DT_REVERSE -DRANDOMIZE # combination

runtime options
-n

sample swarm configuration file:

9/18/08 21

swarm verification of some
large real-world verification models

Verification
Model

State
vector
size

System states reached
in standard bitstate

dfs (-w29)

Time for
bitstate dfs
(in minutes
using 1 cpu)

Number of
swarm jobs
(1 hour limit

6 cpus)

EO1 2736 320.9M 43 86

Fleet 1440 280.5M 58 228

DEOS 576 22.3M 2 456

Gurdag 964 86.2M 17 231

CP 344 165.7M 18 451

DS1 3426 208.6M 159 100

NVDS 180 151.2M 6 516

NVFS 212 139.5M 45 265

9/18/08 22

swarm performance
Number of Control States

Unreached % of Control States
ReachedTotal

standard dfs dfs + swarm standard
dfs

dfs + swarm

EO1 3915 3597 656 8 83

Fleet 171 34 16 80 91

DEOS 2917 1989 84 32 97

Gurdag 1461 853 0 41 100

CP 1848 1332 0 28 100

DS1 133 54 0 59 100

NVDS 296 95 0 68 100

NVFS 3623 1529 0 58 100

Verification
Model

9/18/08 23

synopsis

• there is a growing performance gap
– memory continues to grow
– but cpu speed no longer does (for now)
– the standard approaches to handling large

problem sizes has stopped working
– we have to get smarter about defining

incomplete searches in very large state
spaces

• swarm leverages
– search diversification and simple,

embarrassingly parallel execution

9/18/08 24

http://spinroot.com/swarm/

	Swarm Verification
	trends in cpu memory and clock-speed
	time to fill N GB of RAM
	some observations
	measurement on the SGI Altix �each bar records the runtime of 1 of N processes�2 GB per process (left) or 2 GB shared memory (
	the infinitely large problem�and the infinitely large machine
	a simple, large search problem
	finding needles in haystacks
	bitstate dfs –w29� 229 bits = 226 bytes = 64 MB
	let’s try it
	but why do 100 runs, when we can do 1
	we’ll use this run as a reference
	changing hash-polynomials
	creating 160 runs�by varying 3 parameters
	we can also vary the search algorithm�three simple methods:
	we can use this to define a large nr of runs�e.g., 30 x 160 = 4,800 parallel runs�
	there are more ways to diversify the search...
	the swarm tool:�a new preprocessor for Spin
	swarm verification of some �large real-world verification models
	swarm performance
	synopsis

